Toward Operating System
Support for Scalable
Multithreaded Message Passing

Balazs Gerofi, Masamichi Takagi, Yutaka Ishikawa
RIKEN Advanced Institute for Computational Science,
‘ @

Tokyo, JAPAN

RIMEN



Motivation

2

RIMEN

Large (and growing) number of CPU cores in many-core chips
Relatively small (and decreasing) proportion of per-core memory
Prevalence of hybrid MPI1+X (e.g., OpenMP) hybrid programming models

Recent high-speed interconnection networks expect communication to
be driven explicitly by multiple CPU cores

Multiple threads interact with the MPI library, leading to resource contention
on internal structures

Scalability of MPI in presence of multiple threads is an issue
- Re-designing/re-writing MPI for scalability is a significant effort
Can the operating system help?



Agenda

v
= Background

= Thread private shared library (TPSL)
= Modifications to MPI

= Evaluation

= Discussion

= Conclusion

2

RIMEN



Background: Hybrid LWK Kernels

= Lightweight kernels in HPC
- Low OS noise required for large scale bulk synchronous applications

- Developed either from scratch or by eliminating features of a general
purpose kernel (i.e., Linux) that inhibit scalability

- Usually comes at the price of limited POSIX/Linux API support

= Applications increase in complexity
In-situ analysis/visualization, complex workflows, etc..

- Heavily rely on POSIX/Linux

Application

= How to achieve both at the
same time?

Idea: run Linux and an

LWK on compute nodes TP stack || ves || QR
side-by-side and provide Mingt
OS features selectively by || pev.orivers || ritesys Gene
the two kernels ————

Linux | Full Linux API

RIMEN



Background: Hybrid LWK Kernels

= Lightweight kernels in HPC
- Low OS noise required for large scale bulk synchronous applications

- Developed eit
Plus: Lightweight kernels have small codebase,

which enables rapid prototyping for supporting exotic
hardware features and/or new software concepts!

- Heavily rely on PO I

= How to achieve both at the \ Application
same time? .

Linux | Full Linux APL

|ldea: run Linux and an

LWK on compute nodes el S (T e
side-by-side and provide Mt =
OS features selectively by || evorvers || siesys || Gene
the two kernels ——

| Bimited e

RIMEN



2

RIMEN

Background: IHK/McKernel

Interface for Heterogeneous Kernels (IHK)

Allows dynamically partitioning node resources (e.g., CPU cores, physical memory)
- SMP chip and accelerator support (i.e., Xeon Phi)

Enables management of LWKSs (assign resources, load, boot, destroy, etc..)

Provides inter-kernel communication (IKC), messaging and notification
=  McKernel

A lightweight kernel developed from scratch, boots from IHK
Designed for HPC

Noiseless, simple, implements only performance sensitive system calls (roughly process and memory
management) and the rest are offloaded to Linux

HPC Application
Syscall process

(mcexec)

Standard|C Library
indayd ClLibrary

v
McKer
. v Linux no handle
Linux execute syscall ) > in LWK
syscall ?

yes
| return to userspace |
v
1
IHK

-------- |
.
------------------------------ -1




Agenda

v
v

= Thread private shared library (TPSL)
Modifications to MPI
Evaluation

Discussion

Conclusion

2

RIMEN



Threads, Address Spaces and Page Tables

2

RIMEN

From a multithreaded standpoint the very
central notion of a process is its shared
address space

P_ar?e tables are just a representation of
virtual to physical memory translation

Traditional operating systems use
process wise page tables

i.e., on a multicore chip, all CPU cores
running threads of the same process refer
to the same set of mappings

Intel x86: CR3 register
Main observation:

Processes are abstract, software level
constructs

Page tables are specific to the HW

The fact that threads are provided with
the same view of virtual memory has
nothing to do with HW page tables

There is nothing that prevents the usage
of separate page tables just because the
address space is shared!

Virtual Address Space

Physical
Memory

Application R “. >

text, data, etc.. Process wise

[\ page tables J

OpenMP library \\—r PEntry
:>\PDir

glibc

Heap

Anonymous
mapping, etc..

=




2

RIMEN

Proposal: Thread Private Shared Libraries

Separate page tables allow mapping arbitrary virtual address to different physical memory on a per-
thread basis

For instance: mapping a shared library in a thread private fashion!
TPSL blurs the notion of processes and threads

From a regular mapping’s point of view threads belong to the same process

From the standpoint of a TPSL mapped library each thread appears as a separate process
Mapping MPI via TPSL results in per-thread MPI ranks

Eliminates multithreaded resource contention inside MPI without redesigning it!!
glibc and OpenMP remain as usual

Heap is shared and OpenMP constructs are available even for threads with different MPI ranks

Virtual Address Space Physical Virtual Address Space

Memory

Application
text, data, etc..

"' Per-thread - e Per-thread -~~~ tA:)p;:ictatio:
page tables . AN . page tables e ext, data, etc..
Saa, TS | - - -

OpenMP library gl - J \\ -~ - - OpenMP library

glibc

glibc

Heap

Heap

Anonymous

Anonymous
mapping, etc..

mapping, etc..




Agenda

NI NN

= Modifications to MPI
= Evaluation

= Discussion

= Conclusion

2

RIMEN



Modifications to MPI

= Process Management Interface (PMI):

It needs to be aware of the fact that TPSL constitutes multiple MPI ranks in a
single OS process

- Hydra: instead of PMI_RANK and PMI_FD, it passes PMI_RANKS and
PMI_FDS vectors communicating multiple ranks

- MPI_Init() receives a thread ID which is the offset into the vectors
= Infiniband RDMA registration cache:
IB requires RDMA buffers to be registered and deregistered

- MPI imglementations usually provide their own heap allocator (e.g., _
MVAPICH uses ptmalloc) so that they can track free() and munmap(), which
could implicitly require deregistering buffers

- Heap ma_na%_er é)uts data structures into the BSS, but that becomes thread
private with TPSL

- Some data structures had to be moved into the heap so that they remain
global across threads

= These modifications are not targeting the essence of message passing
- Rather, sort of infrastructural changes..

2

RIMEN



Usage Example

= Initialization
- requires thread ID

= Create derived data types

= Compute remote rank based
on thread ID

= Do data exchange

2

RIMEN

#pragma omp parallel
{

MPI_Init (&argc, &argv, cmp_get_thread_num());

}

MPI_Datatype sub_xz;
int sub_xz_size[3];
int sub_xz_start[3];
int xz_target;

#pragma omp parallel private (xz_target,
sub_xz_size, sub_xz_start)

{
/% Subarray type creation */
sub_xz_size[0]

sub_xz_size[l] = 2;

sub_xz_size[2] = X_SIZE;

sub_xz_start[0]) = omp_thread_id *
(Z_SIZE / omp_get_num_threads());

sub_xz_start[1l] = 0;

]

sub_xz_start[2] 0;

MPI_Type_create_subarray(3, sizes,
sub_xz_size, sub_xz_start,

MPI_ORDER_C, MPI_DOUBLE, &sub_xz);

MPI_Type_commit (&sub_xz);

xz_target = (rank + omp_get_num_threads())

% num_ranks;

/* Main loop */
for (iter = 0; iter < NR_ITERS; ++iter)
/% Computation */

/* HALO exchange */
MPI_Isend(data, 1, sub_xz, xz_target,

{

= Z_SIZE / omp_get_num_threads();

<)




Agenda

D N N NN

= Evaluation
= Discussion
= Conclusion

RIMEN



Evaluation: Node Configuration

= Intel Xeon lvy Bridge (E5-2670 v2 @ 2.50GHz) CPUs

- Two sockets, ten cores per socket, 2 HW threads per core = 40 HW threads
per node

= 64GB RAM, 2 NUMA domains

- All experiments were restricted to NUMA node 0

- Same set of CPU cores both for Linux and McKernel
= Mellanox Infiniband QDR (MT27500 ConnectX-3)

= Two MPI distributions:
- MPICH 3.1.3

. Infiniband netmod developed by Masamichi Takagi while visiting ANL
- MVAPICH 2.1

2

RIMEN



Evaluation: Latency, Message Rate and Bandwidth

1.E+04

1.E+03

Latency (micro seconds)

@

RIMEN

=0-1 process pair
%2 process pairs
4 process pairs

<©-8 process pairs

MVAPICH 2.1 Latency

~0-1 OMP thread pair
<2 OMP thread pairs
4 OMP thread pairs
-©-8 OMP thread pairs
16 OMP thread pairs

=0-1 OMP thread pair

<452 OMP thread pairs
4 OMP thread pairs

<©-8 OMP thread pairs

16 OMP thread pairs

16 process pairs

Message size (byte) Message size (byte) Message size (byte)

Flat MPI (Linux) Multithreaded MPI (Linux) TPSL MPI (IHK/McKernel)

OSU latency and bandwidth benchmarks extended to support multithreaded measurements
Flat MPI messaging latency doesn’t change substantially with growing number of process pairs
Multithreaded performance is miserable, 2 orders of magnitude slower when running 16 threads

TPSL mapped MPI multithreaded performance — same as flat MPI !



Evaluation: Latency, Message Rate and Bandwidth

1.E+07

1.E+06

1.E+05

1.E+04

Messaging rate (msgs / sec)

1.E+03

1.E+02

@

RIMEN

=0-1 process pair

%2 process pairs
4 process pairs

<©-8 process pairs
16 process pairs

X X
— N

X ¥ ¥ ¥ ¥ ¥ M ¥
< 00 WA 0O
MmO N A

— N

Message size (byte)

Flat MPI (Linux)

MVAPICH 2.1 Message Rate

<0=1 OMP thread pair

42 OMP thread pairs
4 OMP thread pairs

“©-8 OMP thread pairs
16 OMP thread pairs

0 O N < X
- n O —

128
256
512

Message size (byte)

Multithreaded MPI (Linux)

<0=1 OMP thread pair

<452 OMP thread pairs
4 OMP thread pairs

<©-8 OMP thread pairs
16 OMP thread pairs

00 O N S0 ON X ¥ VYV VY VMY Y. M .M
A M ONNd—A N0 ONS 0O
— N N N O N 1

— N

Message size (byte)

TPSL MPI (IHK/McKernel)

OSU latency and bandwidth benchmarks extended to support multithreaded measurements
Flat MPI messaging rate increases substantially with growing number of process pairs
Multithreaded performance becomes an order of magnitude slower with the growing number threads

TPSL mapped MPI multithreaded performance — same as flat MPI !



Evaluation: Latency, Message Rate and Bandwidth

MVAPICH 2.1 Bandwidth

P R T PO R R
P T S ) B B e m -
gy ¥ ¥ = et 5

1.E+04

—~ 1.E+03
2
2 -1 process pair
g %2 process pairs
S 1.E+02 , 4 process pa!rs
S <©-8 process pairs N hread pai
.§ 16 process pairs <1 OMP threa pa!r <01 OMP thread pair
2 <2 OMP thread pairs 42 OMP thread pairs
@ 1 E+01 4 OMP thread pairs 4 OMP thread pairs
-8 OMP thread pairs -8 OMP thread pairs
16 OMP thread pairs 16 OMP thread pairs
1.E+00
X ¥ ¥ ¥ X ¥ X X X X
TCORRIRANNAEIEATAELTET OO CCHBRSNINISINFALAIZT USRS EREINIS LT3
— N un ~— N N — N
Message size (byte) Message size (byte) Message size (byte)
Flat MPI (Linux) Multithreaded MPI (Linux) TPSL MPI (IHK/McKernel)

= OSU latency and bandwidth benchmarks extended to support multithreaded measurements
= Flat MPI bandwidth increases with growing number of process pairs (for small buffers)
= Multithreaded performance is an order of magnitude slower for 16 threads

p- TPSL mapped MPI multithreaded performance — same as flat MPI !
®

RIMEN



Evaluation: Latency, Message Rate and Bandwidth
MPICH 3.1.3

1.E+04 1.E+05 1.E+04

-1 OMP thread pair
<2 OMP thread pairs

<0-1 process pair

<2 process pairs 1.E+04

LE+03 | g process pairs 1.6+03 | “*4 OMP thread pa!rs
“©-8 OMP thread pairs
“®°8 process pairs 16 OMP thread pairs
1.E+03
=1+16 process pairs
1.E+02 1.E+02

1.E+02

Latency (micro seconds)
Latency (micro seconds)
Latency (micro seconds)

Latency

1.E+01 1.E+01

1.E+01

0 S N e o e oy R e N S 1E+00 LE+00
222 O H AN T 0WNTOONNNY XXX XXX XX
SOeNRRTYYRESIRRIENT SETIRANIIBENFTIENZ33
Sdn Sdn
Message size (byte) Message size (byte)
1.E+07 1.E+07

1.E+06 1.E+06

1.E+05 1.E+05

=¢-1 OMP thread pair
<2 OMP thread pairs

Messaging rate (msgs / sec)

Message Rate
Messaging rate (msgs / sec)

° .
1.E+04 - (E+04
IB netmod not optimized
-8 OMP thread pairs
\
i 1]
1.E+03 f Itit h d d 1.6403 L7716 OMP thread pairs
or mu readed exe-
1.E+02 - 1E+02 T T T T T T
o T OO N WO NN YN XX xx
Cul'lon..? 7 ERRELEEFEERALE R R
Message size (byte) Message size (byte)
1.E+04 - 1.E+04 1.E+04
£ o
et - LE+03 - LE+03 - LE+03
© [ ] ) [
— N <1 process pair 2 2
; é 452 process pairs g / é /'
'c =3 4 process pairs | < y. 4 = g.d
1.E+02 1.E+02 o 1.E402
= - < 4 =
E <©-8 process pairs 5 " E
g H 16 process pairs H +L OMP thread pair H -1 OMP thread pair
3 .
m £ g €2 OMP thread pairs ‘E 42 OMP thread pairs
“ 1401 = 1E+01 p / 4 OMPthread pairs | D 1E01 4 OMP thread pairs |
s <9-8 OMP thread pairs = “0-8 OMP thread pairs
%16 OMP thread pairs 16 OMP thread pairs
LE$00 T T T T T T T T T LEH00 ekl o LE0 T T T T T T T T T
SRIIRATANTSENIEEE AR BRRETNIIRIIREIERS CTTRRIRARERTSENERRNAAS
S8@ Sd5 SA0
Message size (byte) Message size (byte) Message size (byte)

nms.u Flat MPI (Linux) Multithreaded MPI (Linux) TPSL MPI (IHK/McKernel)



Evaluation: Derived Datatype HALO Exchange

= Derived data types for exchanging 12 B Cube
HALO data of a three dimensional 8 I mlargex
array of doubles (using subarray) e Z Large Y
§ 5 Wlargez
= Three shapes: & ‘3‘
= Cube: 512 x 512 x 512 5 S~
= LargeX: 16k x 128 x 64 1
S

= LargeY: 128 x 16k x 64
= LargeZ: 128 x 64

Number of threads
Plane X-Z

for X-Z plane large Z dimension
implies a lot of small data
chunks scattered
non-contiguously in memory /

= X-Y plane is co

= X-Z, Y-Z planes usi

with TPSL ranks — ] -targe>Y<
arge

N largeZ

1 2 4 8 16

p Number of threads
nms.u Plane Y-Z

19



Evaluation: Derived Datatype HALO Exchange

RIMEN

Derived data types for exchanging
HALO data of a three dimensional
array of doubles (using sub )

Three shapes:
= Cube: 512
= LargeX: 16k
= LargeY: 128 x
= LargeZ: 128 x 64 x 1

depending on the shape,

increasing the number of threads

translates to lower
performance...

0
9 B Cube
8
M Large X
. g
Lz

X-Y plane is contiguous in memory

X-Z, Y-Z planes using 1 to 16 threads
with TPSL ranks

2 4 8 16
— Number of threads
\ Plane X-Z
6
5 B Cube
M large X
4
S Large Y
=
o3 B large Z
o
(7]

1 2 4 8 16
Number of threads

Plane Y-Z



Agenda

D D N N N N

= Discussion
= Conclusion

RIMEN



Discussion: Limitations

= Helper threads
= TPSL cannot distinguish whether or not a pthread_create() (i.e., clone() syscall) is

supposed to share address space with parent, they all are separated now
= a new flag to clone() could indicate this

= Memory consumption
= Extra memory for page tables is required
= Only a designated part of the address space is separated, rest share mappings
= Library is mapped with COW
= MPI internal buffers are duplicated
= Could MPI be aware of of TPSL? Would that require lot of changes?..
= TLB contention
= Although TLB is HW thread private, some architectures may share higher level TLB
caches
= TPSL increases contention on those resources
= OpenMP
= The OpenMP standard doesn’t require to map threads to the same thread_id across
different parallel regions (although it normally does)
= Embedded loops may be a problem

2

RIMEN



Conclusion and Future Work

= Large number of CPU cores and modern interconnects favor
multiple cores to drive the network simultaneously

= Scalable multithreaded message passing is required!

= Proposed “thread private shared library”, a new OS concept that
helps eliminate contention on MPI internals in multithreaded code

= Orders of magnitude better messaging performance than current
multithreaded MPI

= Requires minimal changes to the library itself
- Demonstrated on MPICH and MVAPICH

= Future directions:
- Evaluate on application code
- Apply TPSL to OpenMPI

p - “Co-design” libraries with TPSL like solutions?
o

RIMEN



Thank you for your attention!
Questions?

Special acknowledgement:
Rolf Riesen, Dave Van Dresser, Evan Powers @ Intel mOS Team

2

RIMEN



