
Plan B: Interruption of
Ongoing MPI Operations to
Support Failure Recovery

 Aurelien Bouteiller, George Bosilca,
Jack J. Dongarra

Euro MPI 2015
Bordeaux, France

Do we need fault tolerance?
• No !

•  Hardware can take care of everything. And [of course] will !
•  The future tense is important !

• Meanwhile from a HPC viewpoint
•  Large platforms report several hard failures a day with tens/hundreds of

applications to be rerun
•  ECC might not be enough to protect the data from Silent Data Corruptions
•  Future HPC platforms will grow in number of resources and by simple

probabilistic deduction the frequency of faults will increase

• Parallel programming paradigms became
mainstream, and HPC will not be the predominant
target
•  What do we want MPI to be ?

Fault Tolerance techniques: 1/2
Rollback Recovery

•  Rollback recovery issues:
•  I/O overhead grows with scale (as MTBF declines)

•  Young/Dali Formulas used to compute optimal
checkpoint interval

•  Results in too many preventive checkpoints
•  Eventually, more time spent doing checkpoints

than real work

•  Coordinated Checkpoint (legacy):
•  Low cost on communication
•  Coordinated recovery

•  Uncoordinated Checkpoint:
•  Overhead on communication
•  Increased size of the checkpoint
•  Independent process recovery

•  Non faulty process continue progressing during
recovery

Coordinated checkpoint
(with non-blocking, incremental checkpoints)

Uncoordinated checkpoint
(with non-blocking, incremental checkpoints)

Fault Tolerance Techniques 2/2
Forward Recovery

•  Forward Recovery:
•  Any technique that permit the application to continue without rollback

•  Master-Worker with simple resubmission
•  Iterative methods, Naturally fault tolerant algorithms
•  Algorithm Based Fault Tolerance
•  Replication (the only system level Forward Recovery)

•  No checkpoint I/O overhead
•  No rollback, minimal loss of completed work
•  May require (sometime expensive, like

replicates) protection/recovery operations, but
generally still more scalable than checkpoint

•  Often requires in-depths algorithm rewrite (in
contrast to automatic system based C/R)

Protection blocks

Factorized in previous
iterations

trailing matrix
& protection

update by
applying the

same
operations

Factorized in previous
iterations

Factorize

ABFT

a
b

c

d

b

e

Master

Worker0
Worker1
Worker2

time

MPI-3: Fault Tolerance support
•  We have algorithms (uncoordinated

checkpoint, forward recovery), but they expect
MPI to continue to operate across failures
•  MPI support of FT is non-existent
•  Prevents effective deployment of efficient, application

specific approaches

•  MPI_ERRORS_ARE_FATAL (default mode)
•  Application crashes at first failure

•  MPI_ERRORS_RETURN
•  Error returned to the user
•  State of MPI undefined

•  “…does not necessarily allow the user to continue to use MPI after an
error is detected. The purpose of these error handler is to allow a user to
issue user-defined error messages and take actions unrelated to MPI…An
MPI implementation is free to allow MPI to continue after an
error…” (MPI-1.1, page 195)

•  “Advice to implementors: A good quality implementation will, to the
greatest possible extent, circumvent the impact of an error, so that normal
processing can continue after an error handler was invoked.”

Requirements for MPI standardization of FT

•  Expressive, simple to use
•  Support legacy code, backward compatible
•  Enable users to port their code simply
•  Support a variety of FT models and approaches

•  Minimal (ideally zero) impact on
failure free performance
•  No global knowledge of failures
•  No supplementary communications to maintain

global state
•  Realistic memory requirements

•  Simple to implement
•  Minimal (or zero) changes to existing functions
•  Limited number of new functions
•  Consider thread safety when designing the API MPI

Checkpoint
/Restart

Uniform
Collectives Others

Application

FAILURE_ACK | REVOKE |
SHRINK | AGREE

Application Recovery Patterns

User Level Failure Mitigation: a set of MPI interface extensions to enable MPI
programs to restore MPI communication capabilities disabled by failures

ULFM: API extensions to “repair MPI”

•  Flexible:
•  Must accommodate all application recovery patterns
•  No particular model favored
•  Application directs recovery, pays only the necessary cost

•  Performance:
•  Protective actions outside of critical path / communication routines
•  Unmodified collective, rendez-vous, RMA algorithms
•  Encourages a reactive programming style (diminish failure free overhead)

•  Productivity:
•  Backward compatible with non-FT applications
•  A few simple concepts enable all types FT support (hard and soft failures)
•  Key concepts to support abstract models, libraries, languages, runtimes, etc

8

User Level Failure Mitigation: a set of MPI interface extensions to
enable MPI programs to restore MPI communication capabilities
disabled by failures

Minimal Feature Set for a Resilient MPI

•  Failure Notification
•  Error Propagation
•  Error Recovery

Not all recovery strategies
require all of these features,
that’s why the interface splits
notification, propagation and
recovery.

ULFM is not a recovery strategy, but a minimalistic set of
building blocks for more complex recovery strategies.

Minimal Feature Set for FT MPI
•  Failure Notification
• Error Propagation
• Error Recovery

Not all recovery strategies
require all of these features,
that’s why the interface splits
notification, propagation and recovery.
ULFM is not a recovery strategy, but a minimalistic
set of building blocks for more complex recovery
strategies.

7

MPI

Checkpoint/
Restart

Uniform
Collectives Others

Application

FAILURE_ACK | REVOKE |
SHRINK | AGREE

Integration with existing mechanisms

• New error codes to deal with failures
•  MPI_ERROR_PROC_FAILED: report that the operation discovered a newly

dead process. Returned from all blocking function, and all completion
functions.

•  MPI_ERROR_PROC_FAILED_PENDING: report that a non-blocking
MPI_ANY_SOURCE potential sender has been discovered dead.

•  MPI_ERROR_REVOKED: a communicator has been declared improper for
further communications. All future communications on this communicator
will raise the same error code, with the exception of a handful of recovery
functions

Summary of new functions

•  MPI_Comm_failure_ack(comm)
•  Resumes matching for MPI_ANY_SOURCE

•  MPI_Comm_failure_get_acked(comm, &group)
•  Returns to the user the group of processes acknowledged to have failed

•  MPI_Comm_revoke(comm)
–  Non-collective collective, interrupts all operations on comm

(future or active, at all ranks) by raising MPI_ERR_REVOKED

•  MPI_Comm_shrink(comm, &newcomm)
–  Collective, creates a new communicator without failed

processes (identical at all ranks)
•  MPI_Comm_agree(comm, &mask)

–  Collective, agrees on the AND value on binary mask,
ignoring failed processes (reliable AllReduce), and the
return core

N
otification

Propagation
Recovery

Errors are visible only for operations that
can’t complete

• Operations that can’t complete
return ERR_PROC_FAILED
•  State of MPI objects unchanged (communicators,

etc)
•  Repeating the same operation has the same

outcome

• Operations that can be
completed return MPI_SUCCESS
•  Pt-2-pt operations between non failed ranks can

continue

S(1)
PF

tim
e

R(2)

R(1)

R(2)

S(2)

S(3)

S

R(0)
S

PF

S(0)
S

S
S(2)

R(3)
S

S

S
S

Incoherent global state and resolution

• Operations that can’t complete
return ERR_PROC_FAILED

• Operations that can be
completed return MPI_SUCCESS
•  local semantic is respected (that is buffer content

is defined), it does not indicate success at other
ranks!

•  New constructs MPI_Comm_revoke resolves
inconsistencies introduced by failures

Bcast
S S PF

Bcast
Revoke

R R

Shrink

Bcast
S S S

tim
e

Resolving transitive dependencies

•  P1 fails
•  P2 raises an error and wants

to change comm pattern to do
application recovery

•  but P3..Pn are stuck in their
posted recv

•  P2 can unlock them with
Revoke

•  P3..Pn join P2 in the recovery

2. NON-UNIFORM FAILURE KNOWLEDGE
This section discusses the rationale behind the proposed

design that justifies the introduction of the Revoke opera-
tion. We take the perspective of the performance conscious
MPI implementor, and analyze the unacceptable overhead
resulting from requiring uniformity of failure knowledge. We
then present the issues that arise when this requirement is
dropped, and the modus-operandi of the Revoke interface to
resolve them. The proposed design does indeed permit min-
imal overhead on failure free performance, as has been illus-
trated by the implementation presented in [7]. A more gen-
eral presentation of the ulfm interface can be found in [6].

2.1 Failure Detection
Failure detection has proven to be a complex but crucial

area of fault tolerance research. Although in the most ad-
verse hypothesis of a completely asynchronous system, fail-
ures (even simple processes crash, as we consider here) are
intractable in theory [17], the existence of an appropriate
failure detector permits resolving most of the theoretical
impossibilities [11]. However, requiring complete awareness
(thus active monitoring) of failures of every process by every
other process would generate an immense amount of system
noise (from heartbeat messages injected into the network
and the respective treatments on the computing resources
to respond to them), and it is known that MPI communi-
cation performance is very sensitive to system noise [23].
Fortunately, processes that are not trying to communicate
with a dead process do not need, a priori, to be aware of
its failure, as their operations are with alive processors and
therefore deadlock-free. As a consequence, failure detection
in ulfm only requires to detect failures of processes that are
direct partners in a communication operation.

2.2 Local versus Uniform Error Reporting
Another natural preconception is to consider that detec-

tion of failures at any rank results in MPI automatically
altering the state of all communication objects in which the
associated process appears (i.e. communicators, windows,
etc.). In such a model, it is understood that the failure
“damages”the communication object and renders it inappro-
priate for further communications. However, a complication
is hidden in such an approach: the state of MPI communi-
cation objects is the aggregate state of individual views by
each process of the distributed system. As failure aware-
ness is not expected to be global, the implementation would
then require internal and asynchronous propagation of fail-
ure detection, again, a process that is prone to introduce jit-
ter. Furthermore, some recovery patterns (typical in PDE
solvers [1], as an example) do not require advanced, nor
collective, corrective actions and can continue between non-
failed processes on the unmodified communication object.
As a consequence, ulfm never automatically modifies the
state of communication objects. Even if it contains failed
processes, a communicator remains a valid communication
object, until explicitly required. Therefore, error reporting
is not intended to indicate that a process failed, but to indi-
cate that an operation cannot deliver the normal semantic
at the local rank: when a failure happened, but an MPI
operation can proceed without disruption, it completes nor-
mally; when the failed process is supposed to participate in
the result of the operation, it is obviously impossible for the
operation to succeed, and an appropriate error is returned.

P1

P2

P3

Pn
Recv(Pn-1)

Recv(P1)

Recv(P[3:n]): Revoked

Recv(P1): Failed
P2 calls Revoke

Plan A Plan B
R

ecovery

Figure 1: The transitive communication pattern in

plan A must be interrupted before any process can

switch to the recovery communication pattern plan
B. By revoking the communication context, P2 en-

sures that all possibly unmatched operations in plan
A, which could provoke deadlocks, are interrupted.

Errors can then be captured by the application by setting
the appropriate MPI_ERRHANDLER.
An additional criterion to consider is that some MPI op-

erations are collective, or have a matching call at some other
process (e.g. Send/Recv). Convenience would call for the
same error be returned uniformly at all ranks that partici-
pated in the communication. This would easily permit track-
ing the global progress of the application (and then infer a
consistent, synchronized recovery point). However, the per-
formance consequences are dire, as it requires that every
communication concludes with an agreement operation be-
tween its participants in order to determine the global suc-
cess or failure of the communication, as viewed by each pro-
cess. Such an operation cannot be possibly achieved in less
than the cost of an AllReduce, even without accounting for
the cost of actually tolerating failures during the operation,
and would thus impose an enormous overhead on communi-
cation. In regard to the goal of maintaining an unchanged
level of performance, it is clearly unacceptable to double,
at best, the cost of all latency bound communication opera-
tions, especially when no failure has occurred. Furthermore,
it is already customary for MPI operations to have a local
only semantic, for example, when an MPI_REDUCE completes
at a non-root process, there is no guarantee that the root
has received the result of the collective operation yet. The
semantic only specifies that when the operation completes,
the local input bu↵er can be reused.
As a consequence, in ulfm, the reporting of errors has a lo-

cal operation semantic: the local completion status (in error,
or successfully) cannot be used to assume if the operation
has failed or succeeded at other ranks. In many applications,
this uncertainty is manageable, because the communication
pattern is simple enough. In some cases, however, the com-
munication pattern does not allow such flexibility, and the
application thereby requires an operation to resolve that un-
certainty, as described below.

2.3 Dependencies Between Processes
If the communication pattern is complex, the occurrence

of failures has the potential to deeply disturb the application
and prevent an e↵ective recovery from being implemented.
Consider the example in Figure 1: as long as no failure oc-
curs, the processes are communicating in a point-to-point
pattern (called plan A). Process Pk is waiting to receive a
message from Pk�1, then sends a message to Pk+1 (when

proc_failed_err_handler(MPI_Comm comm, int err) {
 if(err == MPI_ERR_PROC_FAILED ||
 err == MPI_ERR_REVOKED) {
 if(err == MPI_ERR_PROC_FAILED) MPI_Comm_revoke(comm);
 recovery(comm);
 }
}
ft_transitive_deps(void) {
 for(i=0; i<nbrecv; i++) {
 if(myrank>0) MPI_Irecv(buff, count, datatype,
 myrank-1, tag, comm, &req);
 if(myrank<n) MPI_Send(buff2, count, datatype,
 myrank+1, tag, comm, &req); }
}

Errors and Collective Communications

•  Lax consistency: Exceptions are raised only at ranks
where the Bcast couldn’t succeed
•  In a tree-based Bcast, only the subtree under the failed process sees the

failure
•  Other ranks succeed and proceed to the next Bcast
•  Ranks that couldn’t complete enter “recovery”, do not match the Bcast posted

at other ranks => MPI_Comm_revoke(comm) interrupts unmatched Bcast and
forces an exception (and triggers recovery) at all ranks

proc_failed_err_handler(MPI_Comm comm, int err) {
 if(err == MPI_ERR_PROC_FAILED ||
 err == MPI_ERR_REVOKED) {
 if(err == MPI_ERR_PROC_FAILED) MPI_Comm_revoke(comm);
 recovery(comm);
 }
}
deadlocking_collectives(void) {
 for(i=0; i<nbrecv; i++)
 MPI_Bcast(buff, count, datatype, 0, comm);
}

Revoke is a critical operation that must be reliable and scalable

Contribution 1:
MPI_Comm_revoke != Reliable Broadcast
•  The revoke notification need to be propagated to all alive

processes (almost like a reliable broadcast)
•  In the context of MPI_Comm_revoke, the 4 defining

qualities of a reliable broadcast (Termination, Validity,
Integrity and Agreement) can be relaxed (non-uniform
versions)
•  Agreement, Validity: once one process delivers v, then all processes delivers v. Revoke

has a single state (revoked) and all processes will eventually converge their views.
•  Integrity: a message delivered at most once. The revoked communicator is immutable,

so multiple deliveries is not an issue
•  Termination: Once a communicator is locally known as revoked no further propagation of

the state change

•  As we don’t need uniform variants of the revoke
operation, we are not bound to fully-connected overlay
topologies (Hamiltonian is more than enough)

Contribution 2: Identifying a suitable
underlying topology
•  The basic behavior of a process: once it receives a

revoke message for the first time it delivers it to all
neighbors
•  The agreement property can only be guaranteed when failures do not

disconnect the overlay graph

•  Fully connected topologies do have such a property
but they scale poorly with the number of processes.
In practice:
•  Number of messages quadratic
•  Resource exhaustion: too many simultaneously opened channels, too many

unexpected messages or posted receives

• We need a better topology with small degree and
diameter, hardened and bridgeless
•  Torus, HiC, CST, Hypercube, Chord (not good enough)

Binomial Graph (BMG)
•  Undirected graph G:=(V, E), |V|=n (any size)

•  Node i={0,1,2,…,n-1} has links to a set of nodes U
•  U={i±1, i±2,…, i±2k | 2k ≤ n} in a circular space

•  U={ (i+1)mod n, (i+2)mod n,…, (i+2k)mod n | 2k ≤ n } and
 { (n+i-1)mod n, (n+i-2)mod n,…, (n+i-2k)mod n | 2k ≤ n }

10

5

2

8

9

3

4

6

7

0

1

Belong to the connected Circulant
graph family: biconnected,
bridgeless, cyclic, Hamiltonian,
LCF, regular, traceable, and vertex-
transitive.

Angskun, T., Bosilca, G., Dongarra, J. "Binomial Graph: A
Scalable and Fault- Tolerant Logical Network Topology,"
Proceedings of The Fifth International Symposium on
Parallel and Distributed Processing and Applications
(ISPA07), Springer, Niagara Falls, Canada, 2007

Binomial Graph (BMG)

•  Merging all necessary links creates a binomial tree from each
node in the graph.

11

5

2 8

10

9

3

4 6

7

0

1
1. Broadcast messages
from any node
within steps
2. Extremely difficult to bipartite
3. Easy to compute an alternate
routing around failed processes
4. Interesting self-healing properties

! ")(log2 n

Properties

Basic Properties of BMG
• Degree δ (number of neighbors)

Diameter Average Distance
(D) =O(log2 (n)! "

2
!" #$) (d) ≈ log2(n)3

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25

%
 U

nr
ea

ch
ab

le

Numbers of Failed Nodes

11 nodes
13 nodes
14 nodes
15 nodes
17 nodes
18 nodes
20 nodes
24 nodes

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

%
 U

nr
ea

ch
ab

le

% Failed Nodes

11 nodes
13 nodes
14 nodes
15 nodes
17 nodes
18 nodes
20 nodes
24 nodes

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

%
 B

is
ec

tio
n

% Failed Nodes

11 nodes
13 nodes
14 nodes
15 nodes
17 nodes
18 nodes
20 nodes
24 nodes

(c)

Fig. 2. Percentage of unreachable and bisection in failure circumstances.

The transmission of unicast messages is considered successful if the messages can
reach the destination. This means that the network can deliver messages even
in the presence of failures in the routing path. If there are U unreachable cases
due to network bisection, the percentage of unreachable cases (P) is defined by

P = (
U

T
)⇥ 100.

2.2 Simulation Results and Analysis

The results were obtained by simulating all possible cases as described in the
previous section. The simulation results were obtained from BMG networks of
size 11, 13, 14, 15, 17, 18, 20 and 24. All these BMG topologies have the same
degree (� = 8). Fig. 2(a) illustrates that destinations become unreachable when
the number of failed nodes is more than or equal to eight. However, a percentage
of unreachable cases is significant when there are more than 50% of failed nodes
as shown in Fig. 2(b) because the percentage of network bisection rapidly in-
creases when the number of failed nodes is more than 50% as shown in Fig. 2(c).
Not only did the failed nodes a↵ect the reliability of the BMG, but they also
a↵ect the average hop and the diameter of the BMG. Fig. 3 illustrates the e↵ect
of failed nodes on the average hop and diameter for the remaining nodes in the
case where the logical topology is constant. It indicates that the failed nodes
have an e↵ect on the average hop and the diameter, especially on large number
of nodes. The average hop marginally increases when the number of failed nodes
increases. While the diameter rapidly increases when the number of failed nodes
increases. Eventually, both values will reduce to one when only two nodes are
left in the BMG.

These simulations reveal potential problems of network bisection and a de-
crease in routing performance when the network has a high percentage of failed
nodes. Fortunately, these problems can be prevented by a self-healing capability
as discussed in the next section.

Bipartite vs. Failed
relationship

Evaluating Revoke Cost

•  Two duplicate of MPI_COMM_WORLD:
•  On the blue communicator:

•  Repeat allreduce (measure baseline time)
•  At some iteration, one rank revokes the blue communicator
•  Measure the time it takes for the last allreduce to be revoked at all ranks

•  Immediately after, on the green communicator
•  Repeat allreduce (this comm is not revoked, no deads, so everything works w/o errors)
•  Measure the time it takes for the first, second, … collective, until the background noise generated by

revoke cannot be observed

- The cost of Revoke cannot
be measured directly. At the
initial caller is essentially 0
(immediate operation,
completes in the background)
- Instead we measure the
impact of a revoke on
subsequent operations
- Even after a Revoke has
delivered to all ranks, the
“revoke tokens” are still
circulating on the network

The MPI_COMM_FREE function is defined as a collective op-
eration whose implementation is likely to be local, that is,
it usually requires no communication. In order to minimize
the performance impact, we designed a fault tolerant barrier
that can progress in the background, so that it doesn’t inflict
a significant duration increase on the MPI_COMM_FREE call it-
self. The deallocation of the communicator then becomes
lazy, when the application calls MPI_COMM_FREE, the com-
municator is marked for deallocation (and the user handle
can be destroyed immediately), however, the internal rep-
resentation of the communicator is deallocated only when
it is safe, after the background barrier completes. Simi-
larly to the Revoke operation, this barrier is implemented
at the BTL level and essentially performs a binomial reduce-
broadcast sequence. When a process receives the broadcast
direction message, it can infer that every process invoked
MPI_COMM_FREE on that communicator, hence all communi-
cation on the communicator completed1 (either successfully,
or in error when a participant died, or the revoked operation
was interrupted).

However, Revoke notification messages are not posted un-
der the control of the user, and therefore they are not com-
pleted before MPI_COMM_FREE. Thus, it is still possible that
some continue to be delivered after the loosely synchronizing
MPI_COMM_FREE has completed. In order to discriminate be-
tween di↵erent communicators using the same index, the Re-
voke message compounds the index with the epoch number,
representing how many times this index has been allocated.
This compound key is then used to perform the communi-
cator lookup (in the case of Revoke messages only, normal
MPI messages still employ the normal MPI matching with
context identifiers only). If a communicator does not exist
anymore (the message epoch is lower than the index epoch),
the Revoke message is dropped; this is safe, as when the com-
municator doesn’t exist anymore, the loosely synchronized
MPI_COMM_FREE guarantees that it has been freed at every
other process too. When the communicator with the cor-
rect epoch exists, there are two cases; 1) the communicator
had already been revoked, then the callback drops the mes-
sage and returns; 2) the communicator is not yet revoked,
then it is revoked immediately and the Revoke message is
broadcast to all neighbors.

When a communicator is revoked for the first time, the
list of pending MPI requests is traversed to mark all re-
quests on that communicator as completed in error. Their
status is set to the special error code MPIX_ERR_REVOKED,
pending RDMA operations are cancelled, and the memory
registrations are withdrawn. In addition, the unexpected
and matching queues of the communicator are also traversed
to discard incoming message fragments.

4. EXPERIMENTAL EVALUATION
The experimental evaluation of the Revoke operation is

conducted on the Darter platform, a Cray XC30 supercom-
puter hosted at the National Institute for Computational
Science (NICS). Each of the 724 compute nodes features
Two 2.6 GHz Intel 8-core XEON E5-2600 (Sandy Bridge) Se-

1Freeing a communicator that still has pending messages is
standard compliant, but strongly discouraged: as the com-
municator is not available anymore, if the operation must
report an error, it triggers the default MPI_ERRORS_ABORT
error handler, which e↵ectively makes such an application
inherently non-fault tolerant.

Al
lR

ed
uc

e
(re

vo
ke

d)

Al
lR

ed
uc

e
(1

st
 p

os
t r

ev
ok

e)

Al
lR

ed
uc

e
(b

ef
or

e
re

vo
ke

)

Al
lR

ed
uc

e
(b

ef
or

e
re

vo
ke

)

One rank Revokes

Al
lR

ed
uc

e
(2

nd
 p

os
t r

ev
ok

e)

Al
lR

ed
uc

e
(3

rd
 p

os
t r

ev
ok

e)

Revoke notification echo

Plan A Plan B

Figure 2: The Revoke Benchmark: a process re-

vokes plan A during a collective communication. As

soon as plan A is interrupted, every process switches

to plan B, a similar communication plan, with the

same collective operation, but on a distinct, dupli-

cate communicator.

ries processors, and is connected via a Cray Aries router with
a bandwidth of 8GB/sec. We employ the ulfm Open MPI
fork, with the“tuned”collective communication module, the
“uGNI” transport module between nodes, and the “SM” trans-
port module for inter-core, shared-memory communication.

4.1 Benchmark
Because of its asymmetrical nature, the impact of the Re-

voke call cannot be measured directly. At the initiator, the
call only starts a non-synchronizing wave of token circula-
tion, and measuring the very short duration of the call is
not representative of the actual time required for the Revoke
call to operate at all target processes. Measuring the time
needed for a particular operation to be interrupted gives a
better estimate of the propagation time of a Revoke notifica-
tion. However, the overall impact remains underestimated
if one doesn’t account for the fact that even after all pro-
cesses have successfully delivered a Revoke notification, the
reliable broadcast algorithm continues to emit and handle
Revoke messages in the background for some time.
The benchmark we designed measures both the duration

and the perturbation generated by the progress of a Revoke
operation on the network. The benchmark comprises two
communication plans (illustrated in Figure 2). Plan A is a
loop that performs a given collective operation on a com-
municator that spans on all available processes (commA). At
some iteration, an initiator process does not match the col-
lective operation, but, instead, invokes MPIX_COMM_REVOKE
on commA, which e↵ectively ends plan A. Plan B is a similar
loop performing the same collective operation in a duplicate
communicator (commB) that spans on the same processes as
commA. However, because it is a distinct communicator, op-
erations on commB do not match operations on commA; in par-
ticular, the Revoke operation on commA has no e↵ect on the
semantic of collective operations posted in commB, all ranks
need to match the operation, and it completes normally. We
consider that the duration of a particular collective opera-
tion is the maximum latency across all ranks, and we then
compute the average over 2,000 repetitions of the bench-
mark. We report the latency of operations on commA before
it is revoked, and when one rank does not match the oper-
ation and instead invokes MPIX_COMM_REVOKE; this Revoked
collective communication gives an estimate of the Revoke
propagation time. Last, we report the latency of the first op-

Darter platform, a Cray XC30 at NICS724 compute nodes with 2 x 2.6 GHz Intel 8-core XEON
E5-2600 (Sandy Bridge), connected via a Cray Aries router with a bandwidth of 8GB/sec.

Evaluation: Initiator Location

•  The underlying BMG topology is
symmetric and reflects in the
revoke which is independent of
the initiator

•  The performance of the first post-
Revoke collective operation
sustains some performance
degradation resulting from the
network jitter associated with the
circulation of revoke tokens

•  After the fifth Barrier
(approximately 700µs), the
application is fully resynchronized,
and the Revoke reliable broadcast
has completely terminated,
therefore leaving the application
free from observable jitter.

��
�
��
��
��

���������������������

���

������������������
���������������
�����������������������
�����������������������
�����������������������

��

��

���

���

���

���

���

���

���

���

���

�� �� �� �� �� �� ��

Figure 3: Revoke cost in Barrier depending on the

initiator rank calling MPIX_COMM_REVOKE (6,000 pro-

cesses).

erations posted on commB until the typical latency becomes
similar to pre-Revoke operations on commA.

The collective communication patterns are inherited, with-
out modification, from the Open MPI non-fault tolerant
“tuned” module. The Cray optimized MPI can, in some
instances, achieve higher performance. For the purpose of
our evaluation, the tuned generic implementation, based on
MPI point-to-point message exchanges, is representative of
users’ communication patterns commonly found in typical,
portable HPC applications.

4.2 Initiator Location and Revoke Impact
Figure 3 presents the latency of Barriers on 6,000 pro-

cesses, depending on the rank of the initiator process that
invokes the MPIX_COMM_REVOKE operation. Thanks to the
symmetric nature of the BMG topology, the Revoked Bar-
rier latency is stable and independent of the initiator rank.
One can note that the time to complete a Revoked Bar-
rier is smaller than the time to complete a normal Barrier.
The normal Barrier has a strong synchronizing semantic:
the operation cannot complete before every process has en-
tered the barrier. A Revoked Barrier doesn’t enforce that
synchronization anymore and it can complete locally before
some processes have participated. Instead, the latency of the
Revoked operation denotes the time taken by the Revoke re-
silient broadcast to reach every rank for the first time; this
propagation latency is similar to the cost of a small message
Broadcast.

However, as stated before, when the Revoke notification
has been delivered to every rank, the reliable broadcast has
not terminated yet, and some Revoke token messages have
been freshly injected in the network (at the minimum, the
2log2(n) messages injected by the last rank to deliver the
Revoke notification are still circulating in the network). As

a consequence, the performance of the first post-Revoke col-
lective operation sustains some performance degradation re-
sulting from the network jitter associated with the circula-
tion of these tokens. This performance degradation is mod-
erate, with the latency approximately doubling. The jitter
noise is equally spread on the BMG topology, therefore, the
increased latency of the first (and the much reduced impact
on the 2nd to 5th) Barrier is also independent of the initia-
tors’ rank.
Although after the first post-Revoke Barrier, no new Re-

voke tokens are injected (when the first Barrier of plan B
completes, a Revoke token has been delivered at every rank,
thus every rank has already injected its reliable broadcast
tokens), the absorption of delayed tokens and the lost syn-
chrony resulting from the initial jitter combine to impact
slightly the Barrier performance. After the fifth Barrier (ap-
proximately 700µs), the application is fully resynchronized,
and the Revoke reliable broadcast has terminated, therefore
leaving the application free from observable jitter.

4.3 Scalability
Figure 4 presents the scalability of the Barrier (left) and

AllReduce (right) collective communications in the Revoke
benchmark. The first observation is that the performance
of post-Revoke collective communications follows the same
scalability trend as the pre-Revoke operations, even those
impacted by jitter. In the case of the AllReduce collec-
tive communication, aside from the 1st post-Revoke AllRe-
duce communication, which still exhibit a moderate over-
head from jitter, the 2nd post-Revoke AllReduce is only
mildly impacted and the 3rd AllReduce exhibit no signif-
icant di↵erence from the failure free case, illustrating that
the jitter introduced by the reliable broadcast algorithm has
a lesser impact on this communication pattern. When the
number of processes increases, the impact of jitter —the
di↵erence between the failure-free and the 1st post-Revoke
operation— is almost constant (or slightly decreasing). If
this trend were to continue at larger scales, the impact of
jitter could become asymptotically negligible.
Last, while the implementations of the “tuned” collective

operations di↵er in performance trends on this Cray machine
(for reasons outside of the scope of this work, but rooting in
the internal collective algorithm selection logic being tuned
for the Infiniband network), the performance of the revoked
operation is similar in both cases, illustrating that, as long
as MPI progress is triggered, the propagation latency of the
BMG reliable broadcast is independent from the communi-
cation plan being revoked.

4.4 AllReduce and Message Size
Figure 5 presents the latency of the AllReduce collective

communication when the message size varies. Focusing first
on the cost of the Revoked AllReduce operation, one can ob-
serve that the duration of the operation remains independent
of the message size until the message size increases to 1MB
or more. As the Revoked operation is interrupted before ex-
changing the entire communication volume, this behavior is
expected. For larger message sizes, however, the delivery of
the Revoke notification may be delayed by the granularity
of the ongoing reduction computation; as these computa-
tions are progressing, the MPI progress engine is managing
them with maximum priority, and thus does not consider
incoming fragments for that time duration. As soon as one

Evaluation: Collective pattern

Performance of post-Revoke collective communications
follows the same scalability trend as the pre-Revoke
operations, even those impacted by jitter.

Evaluation: Message Size
•  Propagation time for

Revoke messages ~=
small message allreduce
latency

•  After the revoke has
propagated, noise
continue for another
small message allreduce
latency

•  Performance penalty
only visible for small
message operations and
only for a short duration.

Conclusion
• ULFM is not a fault management approach

•  It’s a toolbox to build higher-level application/domain specific techniques
•  Critical to improve the scalability and performance of the ULFM constructs

•  detection / revoke / agreement*

•  There are now viable alternatives to handling the
faults by C/R
•  HPC applications can definitively benefit
•  This makes MPI a suitable programming environment for domains outside

HPC

* Herault, T., Bouteiller, A., Bosilca, G., Gamell, M., Teranishi,
K., Parashar, M., Dongarra, J. "Practical Scalable Consensus
for Pseudo-Synchronous Distributed Systems,"
SuperComputing, Austin, TX, November, 2015

More info, resources

http://fault-tolerance.org/
• Standard draft document

•  https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323

• Prototype implementation available
•  Version 1.0 based on Open MPI 1.6 released early September 2015

 https://bitbucket.org/icldistcomp/ulfm
•  Full communicator-based (point-to-point and all flavors of collectives)

support
•  Network support IB, uGNI, TCP, SM
•  RMA, I/O in progress

