LICL

H SRS

Plan B: Interruption of
’ Ongoing MPI Operations to

Support Failure Recovery

Aurelien Bouteiller, George Bosilca, /
Jack J. Dongarra

.l LII.! NN I.ll\‘l I]\ .\!l.
I ENNESSEE
KNOXVILLE

Euro MPI 2015
Bordeaux, France

a1 14

f Do we need fault tolerance?
* NO !

« Hardware can take care of everything. And [of course] will !
« The future tense is important !

 Meanwhile from a HPC viewpoint

« Large platforms report several hard failures a day with tens/hundreds of
applications to be rerun

« ECC might not be enough to protect the data from Silent Data Corruptions

« Future HPC platforms will grow in number of resources and by simple
probabilistic deduction the frequency of faults will increase

 Parallel programming paradigms became
mainstream, and HPC will not be the predominant

target
« What do we want MPI to be ?

e TEAY T TT"Y"Y"Y

a1 14

b Fault Tolerance techniques: 1/2
) Rollback Recovery

Coordinated checkpoint i]
(with non-blocking, incremental checkpoints) * Rollback recovery ISSUes.
I/0 overhead grows with scale (as MTBF declines)

» Young/Dali Formulas used to compute optimal
checkpoint interval
* Results in too many preventive checkpoints
» Eventually, more time spent doing checkpoints
D e 4 D e 4

than real work

« Coordinated Checkpoint (legacy):
Uncoordinated checkpoint * Low cost on communication
(with non-blocking, incremental checkpoints) + Coordinated recovery

e — | — - Uncoordinated Checkpoint:

4 H H h « Overhead on communication ‘
* Increased size of the checkpoint ‘

H H F - Independent process recovery

« Non faulty process continue progressing during
recovery

oY YYD

k Fault Tolerance Techniques 2/2

' Forward Recovery

Forward Recovery:
Any technique that permit the application to continue without rollback
« Master-Worker with simple resubmission
- lterative methods, Naturally fault tolerant algorithms
« Algorithm Based Fault Tolerance
* Replication (the only system level Forward Recovery)

No checkpoint |/0 overhead
No rollback, minimal loss of completed work

May require (sometime expensive, like
replicates) protection/recovery operations, but
generally still more scalable than checkpoint 4R

Often requires in-depths algorithm rewrite (in
contrast to automatic system based C/R) N

Master

WorkerO
Workerl
Worker2

ABFT

suonesa)
snoinaid Uil paziiojoeq

e e e =D

trailing matrix
& protection
update by
applying the
same
operations

v
2

S AR TRV

JK MPI-3: Fault Tolerance support

« We have algorithms (uncoordinated |
checkpoint, forward recovery), but they expect
MPI to continue to operate across failures

MPI support of FT is non-existent

* Prevents effective deployment of efficient, application
specific approaches

+ MPI_ERRORS_ARE_FATAL (default mode)

« Application crashes at first failure
« MPI_ERRORS_RETURN

 Error returned to the user
- State of MPI undefined

« “..does not necessarily allow the user to continue to use MPI after an
error is detected. The purpose of these error handler is to allow a user to
issue user-defined error messages and take actions unrelated to MPI...An
MPI implementation is free to allow MPI to continue after an
error...” (MPI-1.1, page 195)

« “Advice to implementors: A good quality implementation will, to the
greatest possible extent, circumvent the impact of an error, so that normal
processing can continue after an error handler was invoked.” ;

LICL QTEREEE

- EEEERAYTTY"Y"YS

—

L AR RV

> Requirements for MPI standardization of FT

- Expressive, simple to use _—
» Support legacy code, backward compatible Application
» Enable users to port their code simply

« Support a variety of FT models and approaches

* Minimal (ideally zero) impacton |
. ECRIIOINT Urlifors)
failure free performance /Restort MG ectives

* No global knowledge of failures

* No supplementary communications to maintain
global state

Realistic memory requirements

SIEIRUNZS | ACIRES
« Minimal (or zero) changes to existing functions
"t

SICL Qi

A S 3

B

TS

e Limited number of new functions
« Consider thread safety when designing the API

1 I

J Application Recovery Patterns

Coordinated Checkpoint/Restart, Automatic Naturally Fault Tolerant Applications, Master-Worker,
Compiler Assisted, User-driven Checkpointing, etc Domain Decomposition, etc
In-place restart Lo, without disposing of non-faded processes) Application Contnues 3 Smple COMMUNCITION Pattem
accelerates recavery, pemets in-memaory checkpoint anonng failures
Master \ Y
N /’l \ L/ '\| \: /‘
! |
~ Workerd 0 \ \ ¢
| Workerl '
- 2 Worker2

ULFM MPI

Specification

Uncoordinated Checkpoint/Restan
Transactional F1, Migration

Algorithm Fault Tolerance

Replication, etc ABFY
____________ >
ULFM makes these saporcaches portable across MPl implementatons ULFM allows for the deployment B = = = = = = = = = = >
- - - - - - - - - ..)
of ultra-scafadle, algorithm g

specific FT techniques tradng =atru

—_— ~ ——— g & protecton
o — — f— e

— — e — gi spplyng the
¥ 4 . same

eRErILOns

User Level Failure Mitigation: a set of MPI interface extensions to enable MPI

programs to restore MPI communication capabilities disabled by failures

-

S AR TRV

JKULFM: API extensions to “repair MPI”

User Level Failure Mitigation: a set of MPI interface extensions to
enable MPI programs to restore MPlI communication capabilities
disabled by failures

 Flexible:
« Must accommodate all application recovery patterns
* No particular model favored
» Application directs recovery, pays only the necessary cost

 Performance:

« Protective actions outside of critical path / communication routines
« Unmodified collective, rendez-vous, RMA algorithms
« Encourages a reactive programming style (diminish failure free overhead)

* Productivity:
« Backward compatible with non-FT applications
« A few simple concepts enable all types FT support (hard and soft failures)
» Key concepts to support abstract models, libraries, languages, runtimes, etc

SICL B

TENNESSEE

-
i}

et

Minimal Feature Set for a Resilient MPI

* Failure Notification

* Error Recovery

Cﬁg;kpoi'ntr/' Oyﬁ'iform = —
RESTAN: (COIIEGHIVES

Not all recovery strategies
require all of these features, AILUREACKH T REVORES
that’s why the interface splits ST
notification, propagation and
recovery.

IVIPI

S - % UER S %

ULFM is not a recovery strategy, but a minimalistic set of
building blocks for more complex recovery strategies.

C—— e —
> - -

R] 4

JK Integration with existing mechanisms

 New error codes to deal with failures

« MPI_ERROR_PROC_FAILED: report that the operation discovered a newly
dead process. Returned from all blocking function, and all completion
functions.

« MPI_ERROR_PROC_FAILED_PENDING: report that a non-blocking
MPI_ANY_SOURCE potential sender has been discovered dead.

- MPI_ERROR_REVOKED: a communicator has been declared improper for
further communications. All future communications on this communicator
will raise the same error code, with the exception of a handful of recovery
functions

- EEEERAYTTY"Y"YS

|
{;

L KV

Summary of new functions

(comm)
Resumes matching for MPI_ANY_SOURCE
(comm, &group)

» Returns to the user the group of processes acknowledged to have failed

(comm)

— Non-collective collective, interrupts all operations on comm
(future or active, at all ranks) by raising MPI_ERR_REVOKED

(comm, &nhewcomm)

— Collective, creates a new communicator without failed
processes (identical at all ranks)

(comm, &mask)

— Collective, agrees on the AND value on binary mask,
ignoring failed processes (reliable AllReduce), and the
return core

>

> < %
Jd ~ uonesynoN

Sedo

> <
uone

K19N0D28Y

e 1 14

> Errors are visible only for operations that
can’t complete

» Operations that can’t complete
return ERR_PROC_FAILED

« State of MPI objects unchanged (communicators,
ete)

« Repeating the same operation has the same
outcome

« Operations that can be
completed return MPI_SUCCESS

« Pt-2-pt operations between non failed ranks can
continue

<
J

L AR TRV

Incoherent global state and resolution

« Operations that can’t complete
return ERR_PROC_FAILED

« Operations that can be .
completed return MPl_SUCCESS '

local semantic is respected (that is buffer content
is defined), it does not indicate success at other .
ranks! -

« New constructs MPI_Comm_revoke resolves
inconsistencies introduced by failures

a1 14

Resolving transitive dependencies

Recv(P,): Failed
P, calls Revoke

K
J

P,

P,

Plan A Plah B
proc_failed_err_handler(MPI_Comm comm, int err) {
if(err == MPI_ERR_PROC_FAILED | | ¢ P:L fa I |S ¥
err == MPI_ERR_REVOKED) { P2 raises an error and wants ~
if(err == MPI_ERR_PROC_FAILED) MPI_Comm_revoke(comm); to Change comm pattern to do ¢
recovery(commy; application recovery P>
} * but P3..Pn are stuck in their
} d
ft_transitive_deps(void) { posted recv
for(i=0; i<nbrecv; i++) { e P2 can unlock them with .
if(myrank>0) MPI_Irecv(buff, count, datatype, Revoke f

myrank-1, tag, comm, &req);
if(myrank<n) MPI_Send(buff2, count, datatype,
myrank+1, tag, comm, &req); }

P3..Pn join P2 in the recovery
!

l

N

1 4

Errors and Collective Communications

proc_failed_err_handler(MPI_Comm comm, int err) {
if(err == MPI_ERR_PROC_FAILED | |
err == MPI_ERR_REVOKED) {
if(err == MPI_ERR_PROC_FAILED) MPI_Comm_revoke(comm);
recovery(comm);
}
}

deadlocking_collectives(void) {
for(i=0; i<nbrecy; i++)
MPI_Bcast(buff, count, datatype, O, comm);
}

« Lax consistency: Exceptions are raised only at ranks
where the Bcast couldn’t succeed

* |n a tree-based Bcast, only the subtree under the failed process sees the
failure

« Other ranks succeed and proceed to the next Bcast

« Ranks that couldn’t complete enter “recovery”, do not match the Bcast posted
at other ranks => MPI|_Comm_revoke(comm) interrupts unmatched Bcast and
forces an exception (and triggers recovery) at all ranks

oY ""YN"YYS

PRANY Mo g

Contribution 1:

MPI_Comm_revoke = Reliable Broadcast

* The revoke notification need to be propagated to all alive
~ processes (almost like a reliable broadcast)

* |In the context of MPI_Comm_revoke, the 4 defining
qualities of a reliable broadcast (Termination, Validity,
Integrity and Agreement) can be relaxed (non-uniform

versions)
» Agreement, Validity: . Revoke
has a single state (revoked) and all processes will eventually converge their views.
* Integrity: . The revoked communicator is immutable,
so multiple deliveries is not an issue g

« Termination: Once a communicator is locally known as revoked no further propagation of
the state change

« As we don’t need uniform variants of the revoke
operation, we are not bound to fully-connected overlay
topologies (Hamiltonian is more than enough)

)
3
LN}
.

PRANY Mo g

Contribution 2: Identifying a suitable
underlying topology

* The basic behavior of a process: once it receives a
revoke message for the first time it delivers it to all
neighbors

« The agreement property can only be guaranteed when failures do not
disconnect the overlay graph

* Fully connected topologies do have such a property
out they scale poorly with the number of processes.
n practice:

« Number of messages quadratic

* Resource exhaustion: too many simultaneously opened channels, too many
unexpected messages or posted receives

« We need a better topology with small degree and

diameter, hardened and bridgeless
« Torus, HiC, CST, Hypercube, Chord (not good enough)

W A R

> Binomial Graph (BMG)

« Undirected graph G:=(V, E), |V|=n (any size)
 Node i={0,1,2,...,n-1} has links to a set of nodes U

« U={i+1, i+2,..., i+2k | 2k < n}in a circular space
« U={(i+1)mod n, (i+2)mod n,..., (i+2¥)\mod n | 2kx<n}and

{ (n+i-1)mod n, (n+i-2)mod n,..., (n+i-2K\mod n | 2¥x<n}

- @ Belong to the connected Circulant
____/_, graph family: biconnected,
............ - “@ bridgeless, cyclic, Hamiltonian,
PRe - P LCF, regular, traceable, and vertex-
g | .
- \ transitive.
@ @

: Angskun, T., Bosilca, G., Dongarra, J. "Binomial Graph: A
@ @ Scalable and Fault- Tolerant Logical Network Topology,"

Proceedings of The Fifth International Symposium on

!

Parallel and Distributed Processing and Applications ,
— (ISPAQ7), Springer, Niagara Falls, Canada, 2007 !

TN . TSR Y" """

e

Binomial Graph (BMG)

« Merging all necessary links creates a binomial tree from each
node in the graph.

| —
—

7 > AN Properties
g// - 2 I| \:Q /1 Broadcast messages \
o AN from any node s
’ | 12 within [log,(n)] steps #
‘I I 2. Extremely difficult to bipartite ¥
I I’ 3. Easy to compute an alternate '
@,, | @ routing around failed processes
\\@(/- "é QL Interesting self-healing propertjes "‘
o v

SlCL it

g n S ARV

> Basic Properties of BMG
* Degree 0 (number of neighbors)

>
(2 x [logan])—1 Forn= 2% where k € N
=14 (2x [logoan]) =2 For n =2k 4+ 27 where k.j €
2 x [log, n] Otherwise
! 2

Diameter Average Distance

(D)=0(r=1]) @="ong

Torus T
e - orug -
16 | Hypercube i T 16 [Hypercube -~
Chord -~ 'g' Chord -~
2 3
2 8 g 8F
E &) H
g 4 4 o 4 F
8 g
o
-
< i
2 2
1 1 1 L 1 1 l 1 1 1 1 1
16 32 64 128 256 512 1024 16 32 64 128 256 512 1024
Number of Nodes Number of Nodes

Bipartite vs. Failed

% Bisection

relatlonshlp

11 nodes
| 13 nodes ---------
14 nodes -+
15 nodes e
[17 nodes ------
18 nodes

[20 nodes ===~
24 nodes

0 10 20 30 40 50 60 70 80 90 100
% Failed Nodes

TENNESSEE

OICI. R TERESSE

lg Evaluating Revoke Cost The cost of RevoK t

J . Plan A | Plan B be measured directly. At the
¥ | initial caller is essentially O
(immediate operation,
completes in the background)

- Instead we measure the
impact of a revoke on
subsequent operations

AllIReduce
(2nd post revoke)
AlIReduce
(34 post revoke)

AllReduce
(15t post revoke)

—_—
g
8o
3 o
8:—
I
<D
2
N

AllIReduce
(before revoke)
AllIReduce
(revoked)

[

One rank Revokes Revoke notification echo - Even after a Revoke has
_ delivered to all ranks, the
* On the blue communicator: circulating on the network

* Repeat allreduce (measure baseline time)
« At some iteration, one rank revokes the blue communicator
 Measure the time it takes for the last allreduce to be revoked at all ranks

* Immediately after, on the green communicator

* Repeat allreduce (this comm is not revoked, no deads, so everything works w/o errors)

+ Measure the time it takes for the first, second, ... collective, until the background noise generated by
revoke cannot be observed

T TSR Y Y"YYY

Darter platform, a Cray XC30 at NICS724 compute nodes with 2 x 2.6 GHz Intel 8-core XEON If
E5-2600 (Sandy Bridge), connected via a Cray Aries router with a bandwidth of 8GB/sec. ?

OICL RIERESE |

L AR TRV

> Evaluation: Initiator Location

J

180

170

TIME (us)
@
o

Revoke Time and Perturbation in Barrier (np=6000)

- - - - Fault Free Barrier ' '
—7— Revoked Barrier : : 3
= 1Stpost revoke Barrier o R -
—— 2"d'phost-revoke Barrier : z ;
. —— 5'" post-revoke Barrier
SR R RS N "o
V VY [g VY \
................................ SN Y NS
_ v _ . i
L L L L L 9
1k 2k 3k 4k 5k 6k

Revoke Initiator Rank

« The underlying BMG topology is
symmetric and reflects in the
revoke which is independent of
the initiator

« The performance of the first post-
Revoke collective operation
sustains some performance
degradation resulting from the
network jitter associated with the
circulation of revoke tokens

 After the fifth Barrier
(approximately 700us), the
application is fully resynchronized,
and the Revoke reliable broadcast
has completely terminated,
therefore leaving the application
free from observable jitter.

[u et ——r

> Evaluation: Collective pattern

e Trmssvu v orwe r e

R L R I N gl e T JUTY o

- O Pehlom B
N tmwd P
- I ot it S
L Y
‘ R
-
t“’

"‘" |-
! . ”
. _ '.-'

c /J
t g
-
ol . = >
- -» . .

Performance of post-Revoke collective communications
follows the same scalability trend as the pre-Revoke
operations, even those impacted by jitter.

|
'l
|
}

L L b))

e S — . - R WER ST Y

} Evaluatlon Message Size

M we e ool e N o ARl s @ gAY

ikttt — e * Propagation time for
| & E“:”-E;m.b Revoke messages ~=
e Ml W A e small message allreduce
s 1 Mt rpwaien e S Moo Coed / latency
e v Menee e
LA s oo et - After the revoke has
) f prop_agated, noise
2 continue for another
i small message allreduce
= | latency p
« Performance penalty -
- : only visible for small p
o~ message operations and
only for a short duration. '

<
J

L AR TRV

Conclusion

 ULFM is not a fault management approach

 |t’s a toolbox to build higher-level application/domain specific techniques
 Critical to improve the scalability and performance of the ULFM constructs

» detection / revoke / agreement*

* There are now viable alternatives to handling the
faults by C/R

« HPC applications can definitively benefit

« This makes MPI a suitable programming environment for domains outside
HPC

* Herault, T., Bouteiller, A., Bosilca, G., Gamell, M., Teranishi,
K., Parashar, M., Dongarra, J. "Practical Scalable Consensus
for Pseudo-Synchronous Distributed Systems,"

SuperComputing, Austin, TX, November, 2015

- EEEERAYTTY"Y"YS

—‘

14

JK- More info, resources

http://fault-tolerance.org/

« Standard draft document
« https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323

* Prototype implementation available

« Version 1.0 based on Open MPI 1.6 released early September 2015
https://bitbucket.org/icldistcomp/ulfm

« Full communicator-based (point-to-point and all flavors of collectives)
support

« Network support IB, uGNI, TCP, SM
« RMA, I/0 in progress

oY TYY"YYS

S, e

