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HPC machines are rapidly shifting to higher concurrency!
!
‣ Now gathering millions of cores 
‣ Intra-node parallelism is rapidly increasing  
(several hundred threads) (Xeon Phi / KNL) 
‣ This with a smaller memory per thread

It is well aknowledged that applications will have to 
evolve in order to take advantage of such architectures!
MPI + X being often refered to as a potential solution.
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But what does it mean…

‣What is this X ?

Distributed 
Memory Shared-Memory Accelerators Logical Address 

Spaces

MPI 
and optimized 

intra-node 
communications

OpenMP 
Cilk, TBB 
Pthreads, 

…

GPUs, 
FPGAs

PGAS, 
DSM

There are several alternatives: 
MPI + OpenMP, MPI + GPU, MPI + PGAS, ….
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But what does it mean…
‣ Why MPI is not sufficient ? Why do we need this X ?

In our paper, we propose to model this limitation when 
considering domain-splitting in distributed memory context

 We show that distributed memory poses problems of:!
‣ Memory due to domain replication 
‣ Communication overhead and therefore scalability

Then, we propose an MPI level abstraction solving these  
issues for domain splitting by providing the advantages  
of shared-memory programming.
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We consider the case where computation is done over a 
distributed domain (often as a stencil) creating 
dependencies between cells structured as a mesh  
 
—> This covers a wide range of applications (not all) 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It is common knowledge for 
all MPI programmers that 
s u c h d o m a i n s p i t t i n g 
requires halo/ghost cells on 
local domain boundaries.  
   Is it possible to provide 
a simple model of the 
halo-cells ? What is the 
performance impact for 
common topologies ?

 Yes (first part of our paper)
Domain Splitting on 

four processes
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To derive this model, we considered wrapped-around  
meshes (tori) instead of regular ones in order to have  
a regular mesh layout (no border effect).

0 1 0 1 2 1 2

0 1 0 12 02 1 2
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These regular topologies are nonetheless  
completely representative of unwrapped  
ones dealing with the level of connectivity  
between distributed areas.  



Halo-Cell Model (3/6)

9

n: Number of cells 
C: Number of halo layers 
d: Mesh dimension 
l: Characteristic length  
of the topology

« Subtract a mesh without halo-cells to a mesh with 
a characteristic length increased of 2C. »



Halo-Cell Model (4/6)

10
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2  * 3 (processes) * 1 (layer ) = 6 halo cells
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= 4.4.1( sqrt( 16 / 4 ) + 1 )
= 4.4.1( sqrt( 4 ) + 1 )
= 4.4.3
= 48 = ( 4 * 12 ) halo cells
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9 2D (two layers)

= 4.4.2( sqrt( 16 / 4 ) + 2 )

= 4.4.2( sqrt( 4 ) + 2 )

= 4.4.2.4

= 128 = ( 4 * 32 ) halo cells
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S(n, p) = 
s(n)

s(n)

p
+ comm( n, p )

Starting from the well-known speedup equation, it can be seen 
that strong-scaling speedup is bounded by communications 
which are directly linked to  the number of halo-cells.

—> Computation time should be much larger than  
communication time. There should be more local  
cells than halo cells with a complex computation.  
However, this ratio changes with p (strong scaling)
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If we now consider the 
weak-scaling model, 
we have n/p which is a 
constant as is the 
ghost cell ratio.

Communication cost has then to be 
independent of the number of 
processes, in order to allow weak-
scaling. Which is true for regular 
decomposition?
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When doing weak-scaling, it is desirable to limit the  ghost-
cell ratio in order to completely hide communication costs.  
 
However, memory per thread is decreasing:
In 3D, if you want 1% of ghost cells with one layer, 
you need 1.64 GB of memory (for 8 bytes cells). 
Compare it to the 34 MB / Thread on a Xeon Phi.



Halo-Cells and Performance (4/4)
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Hybrid Approach
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Intra-node parallelism is then a direct way of 
reducing the ghost cell ratio and then 
improving scalability by overcoming the per 
thread memory limitation. 

‣ Reducing communication cost 
‣ Limiting ghost-cell memory overhead while 
freeing memory for computation (hiding comms)



MPI Optimized Intra-Node Messaging
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A lot of work has been done to optimize intra-node communications:!
!
‣ SHM memory segments 
‣ KNEM kernel module 
‣ Or since Linux 3.2 Cross Memory Attach (CMA) 
‣ Direct copy in thread-based MPI 
‣ It is even possible to use the HCA to emit RDMA

S u c h a p p r o a c h e s e f fi c i e n t l y r e d u c e n o d e - l o c a l 
communication cost but do not reduce/remove the memory 
associated with halo cells which still has to be duplicated.



MPI Halo
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We propose a Halo Cell abstraction providing the advantages of 
shared-memory models while remaining close to MPI semantics: 

‣  Transparent use of larger memory areas 
‣ Removal of memory duplications between tasks on the same node 
‣ Removal of node-local communications (no copies — Zero copy) 
‣ Support for computation outside of node boundaries (no mixing) 



MPI Halo Principle (1/4)
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When doing a stencil, most applications use two meshes, 
one for « t » and another for « t+1 », approach required  
due to the spatial-dependency between cells.

Classical Ghost Cell Approach With Copies
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What if local cells (located on the same node) could be 
resolved as local pointers — no copies would be required.

**

The source mesh being accessed in read-only is not 
necessary to duplicate data.
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MPI Halo Principle (4/4)
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Illustration of both inter-node and intra-node  
exchanges with MPI-Halo cells.



MPI Halo Example (1D splitting) (1/2)
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/*----- Initialization (Done once) */ 
MPI_Halo local_left, local_right, left, right; 
/* Name Cells and provide Layout */ 
MPIX_Halo_cell_init(  &local_left, "Local Left" , MPI_INT, 1024 ); 
MPIX_Halo_cell_init(  &local_right, "Local Right" , MPI_INT, 1024 ); 
MPIX_Halo_cell_init(  &left, "Remote Right" , MPI_INT, 1024 ); 
MPIX_Halo_cell_init(  &right, "Remote Left" , MPI_INT, 1024 ); 
/* Bind Cells */ 
MPI_Halo_ex ex; 
MPIX_Halo_exchange_init( &ex ); 
MPIX_Halo_cell_bind_local( ex, local_left ); 
MPIX_Halo_cell_bind_local( ex, local_right ); 
MPIX_Halo_cell_bind_remote( ex, right, right_process,  "Local Left" ); 
MPIX_Halo_cell_bind_remote( ex, left, left_process,  "Local Right" ); 
/* Generate Communications */ 
MPIX_Halo_exchange_commit( ex );

0 1 2 3

Local 
Left

Local 
Right

RightLocal  
Right Left Local 

Left



MPI Halo Example (1D splitting) (2/2)
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/*----- Compute Loop (Called at each time-step)*/ 
while( compute ) 
{ 
  /* Register local cell data */ 
  MPIX_Halo_cell_set( local_left, mesh  ); 
  MPIX_Halo_cell_set( local_right, right_coll( mesh )  ); 
  /* Start asynchronous communications */ 
  MPIX_Halo_iexchange( ex ); 
  /* ... Compute mesh center ... */ 
  MPIX_Halo_iexchange_wait( ex );  
  /* Retrieve Ghost arrays */ 
  int * left_ghost, * right_ghost; 
  MPIX_Halo_cell_get( left,  (void **)&left_ghost ); 
  MPIX_Halo_cell_get( right, (void **)&right_ghost ); 
  /* ... Compute mesh boundaries ... */ 
  /* Swap Meshes */ 
  Mesh * tmp = mesh; 
  mesh = oldmesh; 
  oldmesh = tmp; 
}



MPI Halo Interface
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MPI_Halo:!
‣ Automatic buffer abstraction (local or remote) 
‣ Can be set to a value when local 
‣ A pointer can be retrieved when remote 
‣ Supports MPI data-types (packing abstraction)

MPI_Halo_ex:!
‣ Build the communication scheme between MPI_Halo 
‣ Buffers are named (no abstract offsets) 
‣ An error is reported if the remote is not present 
‣ No offset is passed to communication calls 

➡ Boundaries have to be handled as particular case 
‣ Copy can still be forced when the remote is modified



MPI Halo Performance Results (1/3)
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Our test-case was the convolution of a 5616x3744 
RBG image implemented in OpenMP, MPI-Halo, also 
forcing buffer allocation to behave like the classical 
ghost-cell approach. We tested this benchmark with 
various convolution kernel sizes.  
 
Our MPI-Halo interface has been implemented in the 
MPC runtime which is a thread-based MPI, making 
node-level exchanges trivial (shared-memory). Nothing 
prevents the MPI Halo model to be ported to process-
based MPI supposing a previous memory registration.



MPI Halo Performance Results (2/3)
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Computation Time



MPI Halo Performance Results (3/3)

29
Memory Usage



Conclusion
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Halo-Cell Model:!
‣ Introduced a model of the halo-cell ratio 
‣ Explained that scaling was highly impacted by this ratio 
‣ Shown that distributed memory was hitting the per-    
 thread memory barrier, encouraging hybrid models to  
 achieve better ghost-cell ratios particularly for higher  
 dimensions (3D with several layers).

MPI_Halo:!
‣ Proposed an MPI based solution to the domain  
 decomposition issue we exposed (buffer aliasing) 
‣ Allows a clear definition of a communication scheme 
 with static validation of buffer matching (size, name) 
‣ Consistent with inter-node parallelism (unlike OpenMP)
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