
An MPI Halo-Cell Implementation
for Zero-Copy Abstraction

1

EuroMPI 2015  
Runtime and Programming Models  

September 21-23, Bordeaux

Jean-Baptiste Besnard (1), Allen Malony (2), Sameer Shende (1), 
Marc Pérache (3), Patrick Carribault (3) and Julien Jaeger (3)

!
 1. ParaTools SAS, Bruyères-le-Châtel 

2. ParaTools Inc, Eugene USA
3. CEA, DAM, DIF F91297 Arpajon France

jbbesnard@paratools.fr

mailto:jbbesnard@paratools.fr

Introduction (1/3)

2

HPC machines are rapidly shifting to higher concurrency!
!
‣ Now gathering millions of cores
‣ Intra-node parallelism is rapidly increasing  
(several hundred threads) (Xeon Phi / KNL)
‣ This with a smaller memory per thread

It is well aknowledged that applications will have to 
evolve in order to take advantage of such architectures!
MPI + X being often refered to as a potential solution.

Introduction (2/3)

3

But what does it mean…

‣What is this X ?

Distributed
Memory Shared-Memory Accelerators Logical Address

Spaces

MPI 
and optimized 

intra-node 
communications

OpenMP 
Cilk, TBB 
Pthreads,

…

GPUs,
FPGAs

PGAS,
DSM

There are several alternatives:
MPI + OpenMP, MPI + GPU, MPI + PGAS, ….

Introduction (3/3)

4

But what does it mean…
‣ Why MPI is not sufficient ? Why do we need this X ?

In our paper, we propose to model this limitation when
considering domain-splitting in distributed memory context

 We show that distributed memory poses problems of:!
‣ Memory due to domain replication
‣ Communication overhead and therefore scalability

Then, we propose an MPI level abstraction solving these  
issues for domain splitting by providing the advantages  
of shared-memory programming.

Domain Splitting (1/2)

5

0 1

4 5

2 3

6 7

8 9

12 13

10 11

14 15

We consider the case where computation is done over a
distributed domain (often as a stencil) creating
dependencies between cells structured as a mesh  
 
—> This covers a wide range of applications (not all) 

Domain Splitting (2/2)

6

0 1

4 5

2 3

6 7

10 9

14 13

10 11

14 15

10 11

6 7

8 9

12 13

2 1

6 5

8 9

4 5

10 9

6 5

It is common knowledge for
all MPI programmers that
s u c h d o m a i n s p i t t i n g
requires halo/ghost cells on
local domain boundaries.  
 Is it possible to provide
a simple model of the
halo-cells ? What is the
performance impact for
common topologies ?

 Yes (first part of our paper)
Domain Splitting on 

four processes

Halo-Cell Model (1/6)

7

To derive this model, we considered wrapped-around  
meshes (tori) instead of regular ones in order to have  
a regular mesh layout (no border effect).

0 1 0 1 2 1 2

0 1 0 12 02 1 2

Halo-Cell Model (2/6)

8

These regular topologies are nonetheless  
completely representative of unwrapped  
ones dealing with the level of connectivity  
between distributed areas.  

Halo-Cell Model (3/6)

9

n: Number of cells
C: Number of halo layers
d: Mesh dimension 
l: Characteristic length  
of the topology

« Subtract a mesh without halo-cells to a mesh with 
a characteristic length increased of 2C. »

Halo-Cell Model (4/6)

10

0 1 0 12 02 1 2

2 * 3 (processes) * 1 (layer) = 6 halo cells

Halo-Cell Model (5/6)

11

0 1

4 5

2 3

6 7

10 9

14 13

10 11

14 15

10 11

6 7

8 9

12 13

2 1

6 5

8 9

4 5

10 9

6 5

14 1513 12

0

4

8

4

8

12

0

7

11

15

3

15

3

7

11

13 1412

1 20 2 31

2D

= 4.4.1(sqrt(16 / 4) + 1)
= 4.4.1(sqrt(4) + 1)
= 4.4.3
= 48 = (4 * 12) halo cells

Halo-Cell Model (6/6)

12

0 1

4 5

2 3

6 7

10 9

14 13

10 11

14 15

10 11

6 7

8 9

12 13

2 1

6 5

8 9

4 5

10 9

6 5

14 1513 12

0

4

8

4

8

12

0

7

11

15

3

15

3

7

11

13 1412

1 20 2 31

0

4

8

12

3

7

11

15

8

12

0

4

11

15

3

7

12 13 1415 15

0 1 23 3

13 14 1512 12

1 2 30 0

10 119 88

6 75 445 64 77

9 108 1111

6

10

14

2

14

2

6

10

14

2

6

10

5

9

13

1

13

1

5

9

13

1

5

9 2D (two layers)

= 4.4.2(sqrt(16 / 4) + 2)

= 4.4.2(sqrt(4) + 2)

= 4.4.2.4

= 128 = (4 * 32) halo cells

Halo-Cells and Performance (1/4)

13

S(n, p) =
s(n)

s(n)

p
+ comm(n, p)

Starting from the well-known speedup equation, it can be seen
that strong-scaling speedup is bounded by communications
which are directly linked to the number of halo-cells.

—> Computation time should be much larger than  
communication time. There should be more local  
cells than halo cells with a complex computation.  
However, this ratio changes with p (strong scaling)

Halo-Cells and Performance (2/4)

14

If we now consider the
weak-scaling model,
we have n/p which is a
constant as is the
ghost cell ratio.

Communication cost has then to be
independent of the number of
processes, in order to allow weak-
scaling. Which is true for regular
decomposition?

Halo-Cells and Performance (3/4)

15

When doing weak-scaling, it is desirable to limit the ghost-
cell ratio in order to completely hide communication costs.  
 
However, memory per thread is decreasing:
In 3D, if you want 1% of ghost cells with one layer, 
you need 1.64 GB of memory (for 8 bytes cells).
Compare it to the 34 MB / Thread on a Xeon Phi.

Halo-Cells and Performance (4/4)

16

Hybrid Approach

17

Intra-node parallelism is then a direct way of
reducing the ghost cell ratio and then
improving scalability by overcoming the per
thread memory limitation. 

‣ Reducing communication cost
‣ Limiting ghost-cell memory overhead while
freeing memory for computation (hiding comms)

MPI Optimized Intra-Node Messaging

18

A lot of work has been done to optimize intra-node communications:!
!
‣ SHM memory segments
‣ KNEM kernel module
‣ Or since Linux 3.2 Cross Memory Attach (CMA)
‣ Direct copy in thread-based MPI
‣ It is even possible to use the HCA to emit RDMA

S u c h a p p r o a c h e s e f fi c i e n t l y r e d u c e n o d e - l o c a l
communication cost but do not reduce/remove the memory
associated with halo cells which still has to be duplicated.

MPI Halo

19

We propose a Halo Cell abstraction providing the advantages of
shared-memory models while remaining close to MPI semantics: 

‣ Transparent use of larger memory areas
‣ Removal of memory duplications between tasks on the same node
‣ Removal of node-local communications (no copies — Zero copy)
‣ Support for computation outside of node boundaries (no mixing)

MPI Halo Principle (1/4)

20

0 1 2 3

0 1 2 1 2 3

A0

B0

A1

B1

When doing a stencil, most applications use two meshes,
one for « t » and another for « t+1 », approach required  
due to the spatial-dependency between cells.

Classical Ghost Cell Approach With Copies

MPI Halo Principle (2/4)

21

0 1 2 3

0 1 2 3

A0

B0

A1

B1

What if local cells (located on the same node) could be
resolved as local pointers — no copies would be required.

**

The source mesh being accessed in read-only is not
necessary to duplicate data.

MPI Halo Principle (3/4)

22

0 1 2 3

0 1 2 3

A0

B0

A1

B1**

0 1 2 3

0 1 2 3

A0

B0

A1

B1

**

Pointer exchanges allow mesh-switching

T0

T1

MPI Halo Principle (4/4)

23

0 1 2 3

0 1 2 3**

0 1

0 1

0 1

* *

Illustration of both inter-node and intra-node  
exchanges with MPI-Halo cells.

MPI Halo Example (1D splitting) (1/2)

24

/*----- Initialization (Done once) */
MPI_Halo local_left, local_right, left, right;
/* Name Cells and provide Layout */
MPIX_Halo_cell_init(&local_left, "Local Left" , MPI_INT, 1024);
MPIX_Halo_cell_init(&local_right, "Local Right" , MPI_INT, 1024);
MPIX_Halo_cell_init(&left, "Remote Right" , MPI_INT, 1024);
MPIX_Halo_cell_init(&right, "Remote Left" , MPI_INT, 1024);
/* Bind Cells */
MPI_Halo_ex ex;
MPIX_Halo_exchange_init(&ex);
MPIX_Halo_cell_bind_local(ex, local_left);
MPIX_Halo_cell_bind_local(ex, local_right);
MPIX_Halo_cell_bind_remote(ex, right, right_process, "Local Left");
MPIX_Halo_cell_bind_remote(ex, left, left_process, "Local Right");
/* Generate Communications */
MPIX_Halo_exchange_commit(ex);

0 1 2 3

Local 
Left

Local 
Right

RightLocal  
Right Left Local 

Left

MPI Halo Example (1D splitting) (2/2)

25

/*----- Compute Loop (Called at each time-step)*/
while(compute)
{
 /* Register local cell data */
 MPIX_Halo_cell_set(local_left, mesh);
 MPIX_Halo_cell_set(local_right, right_coll(mesh));
 /* Start asynchronous communications */
 MPIX_Halo_iexchange(ex);
 /* ... Compute mesh center ... */
 MPIX_Halo_iexchange_wait(ex);
 /* Retrieve Ghost arrays */
 int * left_ghost, * right_ghost;
 MPIX_Halo_cell_get(left, (void **)&left_ghost);
 MPIX_Halo_cell_get(right, (void **)&right_ghost);
 /* ... Compute mesh boundaries ... */
 /* Swap Meshes */
 Mesh * tmp = mesh;
 mesh = oldmesh;
 oldmesh = tmp;
}

MPI Halo Interface

26

MPI_Halo:!
‣ Automatic buffer abstraction (local or remote)
‣ Can be set to a value when local
‣ A pointer can be retrieved when remote
‣ Supports MPI data-types (packing abstraction)

MPI_Halo_ex:!
‣ Build the communication scheme between MPI_Halo
‣ Buffers are named (no abstract offsets)
‣ An error is reported if the remote is not present
‣ No offset is passed to communication calls

➡ Boundaries have to be handled as particular case
‣ Copy can still be forced when the remote is modified

MPI Halo Performance Results (1/3)

27

Our test-case was the convolution of a 5616x3744
RBG image implemented in OpenMP, MPI-Halo, also
forcing buffer allocation to behave like the classical
ghost-cell approach. We tested this benchmark with
various convolution kernel sizes.  
 
Our MPI-Halo interface has been implemented in the
MPC runtime which is a thread-based MPI, making
node-level exchanges trivial (shared-memory). Nothing
prevents the MPI Halo model to be ported to process-
based MPI supposing a previous memory registration.

MPI Halo Performance Results (2/3)

28
Computation Time

MPI Halo Performance Results (3/3)

29
Memory Usage

Conclusion

30

Halo-Cell Model:!
‣ Introduced a model of the halo-cell ratio
‣ Explained that scaling was highly impacted by this ratio
‣ Shown that distributed memory was hitting the per-  
 thread memory barrier, encouraging hybrid models to  
 achieve better ghost-cell ratios particularly for higher  
 dimensions (3D with several layers).

MPI_Halo:!
‣ Proposed an MPI based solution to the domain  
 decomposition issue we exposed (buffer aliasing)
‣ Allows a clear definition of a communication scheme 
 with static validation of buffer matching (size, name)
‣ Consistent with inter-node parallelism (unlike OpenMP)

An MPI Halo-Cell Implementation
for Zero-Copy Abstraction

31

EuroMPI 2015  
Runtime and Programming Models  

September 21-23, Bordeaux

Jean-Baptiste Besnard (1), Allen Malony (2), Sameer Shende (1), 
Marc Pérache (3), Patrick Carribault (3) and Julien Jaeger (3)

!
 1. ParaTools SAS, Bruyères-le-Châtel 

2. ParaTools Inc, Eugene USA
3. CEA, DAM, DIF F91297 Arpajon France

jbbesnard@paratools.fr

mailto:jbbesnard@paratools.fr

