
© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 1 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 1

Not Another
Boring Vendor Talk

This is what they get

for sending an engineer,
not a marketing guy

Jeffrey M. Squyres
Cisco Systems
23 September 2015

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 2 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 2

Cisco has some fantastic server products
Please buy some

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 3 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 3

Cisco has some fantastic server products
Please buy some

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 4 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 4

I was planning on a ~20
minute talk

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 5 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 5

Then Guillaume told me
I had to take an hour (!)

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 6 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 6

So you get two talks –
for the price of one!

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 7 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 7

Talk 1

Thoughts on fixing
problems with MPI_INIT
and MPI_FINALIZE

A glimpse into the MPI
Forum

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 8 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 8

Talk 2

Cisco’s journey from the
legacy Verbs API to

Libfabric

Verbs

Libfabric

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 9 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 9

MPI_INIT and
MPI_FINALIZE

 Tales of Woe

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 10

int my_thread1_main(void *context) {
 MPI_Initialized(&flag);
 // …
}

int my_thread2_main(void *context) {
 MPI_Initialized(&flag);
 // …
}

int main(int argc, char **argv) {
 MPI_Init_thread(…, MPI_THREAD_FUNNELED, …);
 pthread_create(…, my_thread1_main, NULL);
 pthread_create(…, my_thread2_main, NULL);
 // …
}

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 11

int my_thread1_main(void *context) {
 MPI_Initialized(&flag);
 // …
}

int my_thread2_main(void *context) {
 MPI_Initialized(&flag);
 // …
}

int main(int argc, char **argv) {
 MPI_Init_thread(…, MPI_THREAD_FUNNELED, …);
 pthread_create(…, my_thread1_main, NULL);
 pthread_create(…, my_thread2_main, NULL);
 // …
}

These might run
at the same time (!)

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 12

•  MPI_INITIALIZED (and friends) are allowed to be called at any time
…even by multiple threads
…regardless of MPI_THREAD_* level

•  This is a simple, easy-to-explain solution
And probably what most applications do, anyway J

•  But many other paths were investigated

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 13

•  Cannot call MPI_INIT more than once
•  Cannot set error behavior of MPI_INIT
•  Cannot re-initialize MPI after it has been finalized
•  Cannot init MPI from different entities within a process without a priori

knowledge / coordination

MPI Process

// Library 1
MPI_Initialized(&flag);
if (!flag) MPI_Init(…);

// Library 2
MPI_Initialized(&flag);
if (!flag) MPI_Init(…);

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 14

•  Cannot call MPI_INIT more than once
•  Cannot set error behavior of MPI_INIT
•  Cannot re-initialize MPI after it has been finalized
•  Cannot init MPI from different entities within a process without a priori

knowledge / coordination

MPI Process

// Library 1
MPI_Initialized(&flag);
if (!flag) MPI_Init(…);

// Library 2
MPI_Initialized(&flag);
if (!flag) MPI_Init(…);THIS IS INSUFFICIENT /

POTENTIALLY ERRONEOUS

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 15

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 16

•  Call MPI_INIT as many times as you like
•  By whomever wants to call it

MPI Process

// Library 1
MPI_Init(…);

// Library 2
MPI_Init(…);

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 17

•  Call MPI_INIT as many times as you like
•  By whomever wants to call it

MPI Process

// Library 1
MPI_Init(…);

// Library 2
MPI_Init(…);

// Library 3
MPI_Init(…);

// Library 4
MPI_Init(…);

// Library 5
MPI_Init(…);

// Library 6
MPI_Init(…);// Library 7

MPI_Init(…);

// Library 8
MPI_Init(…);

// Library 9
MPI_Init(…);

// Library 10
MPI_Init(…);

// Library 11
MPI_Init(…);

// Library 12
MPI_Init(…);

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 18

Do you have to call MPI_FINALIZE
exactly that many times?

Do you allow MPI_INIT after
MPI_FINALIZE?

Or perhaps you only allow
MPI_INIT before MPI has been
finalized?

How can you tell if it’s safe to call
MPI_INIT? Atomic “test-and-init”?

I IS CONFUSED

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 19

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 20 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 20

The following are just (incomplete)
crazy ideas

WARNING!

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 21

int my_thread1_main(void *context) {
 MPI_Session session;
 MPI_Session_create(…, &session);

 // Do MPI things

 MPI_Session_free(&session);
}

int my_thread2_main(void *context) {
 MPI_Session session;
 MPI_Session_create(…, &session);

 // Do MPI things

 MPI_Session_free(&session);
}

int main(int argc, char **argv) {
 pthread_create(…, my_thread1_main, NULL);
 pthread_create(…, my_thread2_main, NULL);
 …
}

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 22

int my_thread1_main(void *context) {
 MPI_Session session;
 MPI_Session_create(…, &session);

 // Do MPI things

 MPI_Session_free(&session);
}

int my_thread2_main(void *context) {
 MPI_Session session;
 MPI_Session_create(…, &session);

 // Do MPI things

 MPI_Session_free(&session);
}

int main(int argc, char **argv) {
 pthread_create(…, my_thread1_main, NULL);
 pthread_create(…, my_thread2_main, NULL);
 …
}

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 23

int my_thread1_main(void *context) {
 MPI_Session session;
 MPI_Session_create(&session);
 MPI_Comm_create_from_session(session, &comm)

 // Do MPI things with comm

 MPI_Comm_free(&comm);
 MPI_Session_free(&session);
}

int my_thread1_main(void *context) {
 MPI_Session session;
 MPI_Session_create(&session);
 MPI_Comm_create_from_session(session, &comm)

 // Do MPI things with comm

 MPI_Comm_free(&comm);
 MPI_Session_free(&session);
}

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 24

Each entity (library?) in an OS
process can have its own session

Any session-local state can be
encapsulated in the handle

Entities can create / destroy
sessions at any time
 …in any thread

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 25

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 26

•  When is MPI_COMM_WORLD created (and/or initialized)?
•  When is MPI_COMM_WORLD destroyed?
•  Can you use MPI_COMM_WORLD with any session?

à There doesn’t seem to be an obvious relation between MCW and individual sessions
 (ditto for MPI_COMM_SELF)

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 27

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 28

•  Addresses logical inconsistency with session concept
•  Clean separation of communicators between sub-entities

…maybe slightly better than we have it today (sub-entities dup’ing COMM_WORLD)

•  Side effects:
Fault tolerance issues become easier
Opens some possibilities for scalability improvements

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 29

•  Users will riot

…but what if they don’t?

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 30

•  What would be the forward / backward compatibility strategy?
E.g., deprecate INIT, FINALIZE, INITIALIZED, FINALIZED…?

•  What are the other arguments to MPI_SESSION_CREATE?
•  Can you call both MPI_INIT and MPI_SESSION_CREATE in the same

process?
•  Can you do anything else with a session?

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 31

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 32 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 32

Come to the MPI Forum meeting

Discuss this and other
scintillating MPI topics

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 33 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 33

Cisco’s journey from Verbs
to Libfabric

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 34

Application

Kernel

Cisco VIC ethX port

TCP stack

General Ethernet driver

enic.ko

Userspace
sockets API userspace library

Application

Verbs IB core

usnic.ko

Send and
receive
fast path

usNIC TCP/IP

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 35 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 35

Verbs is a fine API.

…if you make InfiniBand
hardware.

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 36 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 36

...but now there’s this
libfabric thing

(see libfabric.org
community for details)

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 37

Keep in mind, Cisco already supports
UD Verbs

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 38

•  Monotonic enum
•  Could not add popular Ethernet values

1500

9000

•  usNIC verbs provider had to lie (!)
…just like iWARP providers

•  MPI had to match verbs device with IP
interface to find real MTU

Verbs
IBV_MTU_256
IBV_MTU_512
IBV_MTU_1024
IBV_MTU_2048
IBV_MTU_4096

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 39

•  Integer (not enum) endpoint attribute

Libfabric

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 40

•  Integer (not enum) endpoint attribute

Libfabric

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 41

•  Mandatory GRH structure
InfiniBand-specific header

•  40 bytes
UDP header is 42 bytes

…and a different format

•  Breaks ib_ud_pingpong
•  usnic verbs provider used “magic”

ibv_port_query() to return extensions
pointers

E.g., enable 42-byte UDP mode

Verbs

e
t len chk smac dmac …

ver len
n
e
xt

h
o
p

sgid dgid

UDP header: 42 bytes

GRH: 40 bytes

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 42

•  FI_MSG_PREFIX and
ep_attr.msg_prefix_size

Libfabric

e
t len chk smac dmac …

payload

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 43

•  FI_MSG_PREFIX and
ep_attr.msg_prefix_size

Libfabric

e
t len chk smac dmac …

payload

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 44

•  Tuple: (device, port)
Usually a physical device and port

Does not match virtualized VIC hardware

•  Queue pair
•  Completion queue

Verbs

Machine (64GB total)

NUMANode P#0 (32GB)

Socket P#0

L3 (25MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#6

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#7

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#8

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#9

PCI 8086:1521

eth0

PCI 8086:1521

eth1

PCI 8086:1521

eth2

PCI 8086:1521

eth3

PCI 1137:0043

eth4

usnic_0

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:0043

eth5

usnic_1

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

NUMANode P#1 (32GB)

Socket P#1

L3 (25MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#10

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#11

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#12

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#13

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#14

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#15

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#16

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#17

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#18

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#19

PCI 1000:0073

sda

PCI 1137:0043

eth6

usnic_2

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:0043

eth7

usnic_3

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

Indexes: physical

Date: Sat Mar 14 09:27:31 2015

ibv_device
ibv_port

QP QP CQ

QP

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 45

•  Maps nicely to SR-IOV
•  Fabric à PCI physical function (PF)
•  Domain à PCI virtual function (VF)
•  Endpoint à Resources in VF

Machine (64GB total)

NUMANode P#0 (32GB)

Socket P#0

L3 (25MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#6

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#7

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#8

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#9

PCI 8086:1521

eth0

PCI 8086:1521

eth1

PCI 8086:1521

eth2

PCI 8086:1521

eth3

PCI 1137:0043

eth4

usnic_0

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:0043

eth5

usnic_1

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

NUMANode P#1 (32GB)

Socket P#1

L3 (25MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#10

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#11

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#12

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#13

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#14

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#15

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#16

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#17

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#18

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#19

PCI 1000:0073

sda

PCI 1137:0043

eth6

usnic_2

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:0043

eth7

usnic_3

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

PCI 1137:00cf

Indexes: physical

Date: Sat Mar 14 09:27:31 2015

Libfabric

fi_fabric

fi_domain

fi_endpoint
(resources in domain)

EP EP CQ

EP

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 46

•  GID and GUID
No easy mapping back to IP interface

•  usnic verbs provider encoded MAC in
GID

Still cumbersome to map back to IP interface

•  Could use RDMA CM
…but that would be a ton more code

Verbs
mac[0] = gid->raw[8] ^ 2;
mac[1] = gid->raw[9];
mac[2] = gid->raw[10];
mac[3] = gid->raw[13];
mac[4] = gid->raw[14];
mac[5] = gid->raw[15];

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 47

•  Can use IP addressing directly

Libfabric

Everything is awesome

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 48

•  Can use IP addressing directly

Libfabric

Everything is awesome

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 49

•  Generic send call
ibv_post_send(…SG list…)

Lots of branches

•  Wasteful allocations
•  No prefixed receive
•  Branching in completions

Verbs

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 50

•  Multiple types of send calls
fi_send(buffer, …)

•  Variable-length prefix receive
Provider-specific

•  Fewer branches in completions

Libfabric

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 51

 1.9

 1.95

 2

 2.05

 2.1

 2.15

 2.2

 2.25

 2.3

 2.35

 2.4

 0.1 1 10 100

Ti
m

e
(m

ic
ro

se
co

nd
s)

Buffer size

Open MPI with usNIC: IMB PingPong Latency

imb-pingpong-ompi-1.8-verbs.out
imb-pingpong-ompi-1.8-libfabric.out

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 52

 61000

 62000

 63000

 64000

 65000

 66000

 67000

 68000

 69000

 1e+06

Ba
nd

w
id

th
 (m

eg
ab

its
/s

ec
on

d)

Buffer size

Open MPI with usNIC: IMB SendRecv Bandwidth

imb-sendrecv-ompi-1.8-verbs.out
imb-sendrecv-ompi-1.8-libfabric.out

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 53

•  Performance issues
•  Memory registration still a problem
•  No MPI-style tag matching
•  One-sided capabilities do not match MPI
•  Network topology is a separate API

Verbs

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 54

•  Performance happiness
•  Many MPI-helpful features:

Tag matching

One-sided operations

Triggered operations

•  Inherently designed to be more than just point-
to-point

•  More work to be done… but promising
MMU notify

Network topology

Libfabric

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 55

•  Long design discussions about how to
expose Ethernet / VIC concepts in the
verbs API
…usually with few good answers

Especially problematic with new VIC features
over time

•  Conclusion: possible (obviously), but not
preferable

•  Whole API designed with multiple vendor
hardware models in mind

•  Much easier to match our hardware to
core Libfabric concepts

•  Conclusion: much more preferable than
verbs

Libfabric Verbs

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 56 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 56

Ok, so let’s do libfabric!

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 57 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 57

Does it play well with
MPI?

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 58

Byte Transport Layer
(BTL) plugins

Matching Transport
Layer (MTL) plugins

MPI_Send(…)

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 59

•  Inherently multi-device
•  Round-robin for

 small messages
•  Striping for large messages

•  Major protocol decisions and MPI message matching driven by an Open MPI
engine

Byte Transport Layer
(BTL) plugins

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 60

Matching Transport
Layer (MTL) plugins

•  Most details hidden by network API
•  MXM
•  Portals
•  PSM

•  As a side effect, must handle:
•  Process loopback
•  Server loopback (usually via shared memory)

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 61

Byte Transport Layer
(BTL) plugins

Matching Transport
Layer (MTL) plugins

•  IB / iWarp (verbs)
•  Portals
•  SCIF
•  Shared memory
•  TCP
•  uGNI
•  usNIC (verbs)

•  MXM
•  Portals
•  PSM
•  PSM2

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 62

•  IB / iWarp (verbs)
•  Portals
•  SCIF
•  Shared memory
•  TCP
•  uGNI
•  usNIC

Byte Transport Layer
(BTL) plugins

Matching Transport
Layer (MTL) plugins

•  MXM
•  Portals
•  PSM
•  PSM2
•  ofi

libfabric

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 63

libfabric

usnic BTL ofi MTL

•  Cisco developed
•  usNIC-specific
•  OFI point-to-point / UD
•  Tested with usNIC

•  Intel developed
•  Provider neutral
•  OFI tag matching
•  Tested with PSM / PSM2

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 64

verbs
bootstrapping

verbs
message passing

sideband
bootstrapping

1.  Find the corresponding ethX device
2.  Obtain MTU
3.  Open usNIC-specific configuration

options

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 65

verbs
bootstrapping

verbs
message passing

sideband
bootstrapping

libfabric
bootstrapping

à

libfabric
message passing à ~1:1 swap of verbs à libfabric calls

Bootstrapping sequence totally different

No sideband bootstrapping

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 66

•  For a specific provider
Ask fi_getinfo() for
prov_name=“usnic”

•  Use usNIC extensions
Netmask, link speed, IP device
name, etc.

•  usNIC-specific error
messages

•  For any tag-matching
provider

•  No extension use
100% portable

•  Generic error messages

usnic BTL ofi MTL

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 67

•  For a specific provider
Ask fi_getinfo() for
prov_name=“usnic”

•  Use usNIC extensions
Netmask, link speed, IP device
name, etc.

•  usNIC-specific error
messages

•  For any tag-matching
provider

•  No extension use
100% portable

•  Generic error messages

usnic BTL ofi MTL

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 68

•  Libfabric is the Way
Forward for Cisco

Open community
Matches our hardware
Performance benefits
Features benefits

•  Libfabric matches MPI
Has features MPI has been
asking for… for years
Optimistic about its future
(come join us!)

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 69

Thank you.

