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Cisco has some fantastic server products 
Please buy some 
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Cisco has some fantastic server products 
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I was planning on a ~20 
minute talk 
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Then Guillaume told me 
I had to take an hour (!) 
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So you get two talks – 
for the price of one! 
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Talk 1 
 
Thoughts on fixing 
problems with MPI_INIT 
and MPI_FINALIZE 
 
A glimpse into the MPI 
Forum 
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Talk 2 
 

Cisco’s journey from the 
legacy Verbs API to 

Libfabric 

Verbs 

Libfabric 
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MPI_INIT and 
MPI_FINALIZE 
 
                  Tales of Woe 



© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 10 

int my_thread1_main(void *context) {
    MPI_Initialized(&flag);
    // …
}

int my_thread2_main(void *context) {
    MPI_Initialized(&flag);
    // …
}

int main(int argc, char **argv) {
    MPI_Init_thread(…, MPI_THREAD_FUNNELED, …);
    pthread_create(…, my_thread1_main, NULL);
    pthread_create(…, my_thread2_main, NULL);
    // …
}
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int my_thread1_main(void *context) {
    MPI_Initialized(&flag);
    // …
}

int my_thread2_main(void *context) {
    MPI_Initialized(&flag);
    // …
}

int main(int argc, char **argv) {
    MPI_Init_thread(…, MPI_THREAD_FUNNELED, …);
    pthread_create(…, my_thread1_main, NULL);
    pthread_create(…, my_thread2_main, NULL);
    // …
}

These might run 
at the same time (!) 
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•  MPI_INITIALIZED (and friends) are allowed to be called at any time 
…even by multiple threads 
…regardless of MPI_THREAD_* level 

•  This is a simple, easy-to-explain solution 
And probably what most applications do, anyway J 

•  But many other paths were investigated 
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•  Cannot call MPI_INIT more than once 
•  Cannot set error behavior of MPI_INIT 
•  Cannot re-initialize MPI after it has been finalized 
•  Cannot init MPI from different entities within a process without a priori 

knowledge / coordination 

MPI Process 
 
 

// Library 1
MPI_Initialized(&flag);
if (!flag) MPI_Init(…);

// Library 2
MPI_Initialized(&flag);
if (!flag) MPI_Init(…);
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•  Cannot call MPI_INIT more than once 
•  Cannot set error behavior of MPI_INIT 
•  Cannot re-initialize MPI after it has been finalized 
•  Cannot init MPI from different entities within a process without a priori 

knowledge / coordination 

MPI Process 
 
 

// Library 1
MPI_Initialized(&flag);
if (!flag) MPI_Init(…);

// Library 2
MPI_Initialized(&flag);
if (!flag) MPI_Init(…);THIS IS INSUFFICIENT / 

POTENTIALLY ERRONEOUS
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•  Call MPI_INIT as many times as you like 
•  By whomever wants to call it 

MPI Process 
 
 
 
 
 

// Library 1
MPI_Init(…);

// Library 2
MPI_Init(…);
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•  Call MPI_INIT as many times as you like 
•  By whomever wants to call it 

MPI Process 
 
 
 
 
 

// Library 1
MPI_Init(…);

// Library 2
MPI_Init(…);

// Library 3
MPI_Init(…);

// Library 4
MPI_Init(…);

// Library 5
MPI_Init(…);

// Library 6
MPI_Init(…);// Library 7

MPI_Init(…);

// Library 8
MPI_Init(…);

// Library 9
MPI_Init(…);

// Library 10
MPI_Init(…);

// Library 11
MPI_Init(…);

// Library 12
MPI_Init(…);
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Do you have to call MPI_FINALIZE 
exactly that many times? 
 
Do you allow MPI_INIT after 
MPI_FINALIZE? 
 
Or perhaps you only allow 
MPI_INIT before MPI has been 
finalized? 
 
How can you tell if it’s safe to call 
MPI_INIT?  Atomic “test-and-init”? 

I IS CONFUSED 
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The following are just (incomplete) 
crazy ideas 

WARNING! 
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int my_thread1_main(void *context) {
    MPI_Session session;
    MPI_Session_create(…, &session);

    // Do MPI things

    MPI_Session_free(&session);
}

int my_thread2_main(void *context) {
    MPI_Session session;
    MPI_Session_create(…, &session);

    // Do MPI things

    MPI_Session_free(&session);
}

int main(int argc, char **argv) {
    pthread_create(…, my_thread1_main, NULL);
    pthread_create(…, my_thread2_main, NULL);
    …
}
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int my_thread1_main(void *context) {
    MPI_Session session;
    MPI_Session_create(…, &session);

    // Do MPI things

    MPI_Session_free(&session);
}

int my_thread2_main(void *context) {
    MPI_Session session;
    MPI_Session_create(…, &session);

    // Do MPI things

    MPI_Session_free(&session);
}

int main(int argc, char **argv) {
    pthread_create(…, my_thread1_main, NULL);
    pthread_create(…, my_thread2_main, NULL);
    …
}
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int my_thread1_main(void *context) {
    MPI_Session session;
    MPI_Session_create(&session);
    MPI_Comm_create_from_session(session, &comm)

    // Do MPI things with comm

    MPI_Comm_free(&comm);
    MPI_Session_free(&session);
}

int my_thread1_main(void *context) {
    MPI_Session session;
    MPI_Session_create(&session);
    MPI_Comm_create_from_session(session, &comm)

    // Do MPI things with comm

    MPI_Comm_free(&comm);
    MPI_Session_free(&session);
}
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Each entity (library?) in an OS 
process can have its own session 
 
Any session-local state can be 
encapsulated in the handle 
 
Entities can create / destroy 
sessions at any time 
   …in any thread 
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•  When is MPI_COMM_WORLD created (and/or initialized)? 
•  When is MPI_COMM_WORLD destroyed? 
•  Can you use MPI_COMM_WORLD with any session? 

à There doesn’t seem to be an obvious relation between MCW and individual sessions 
     (ditto for MPI_COMM_SELF) 
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•  Addresses logical inconsistency with session concept 
•  Clean separation of communicators between sub-entities 

…maybe slightly better than we have it today (sub-entities dup’ing COMM_WORLD) 
 

•  Side effects: 
Fault tolerance issues become easier 
Opens some possibilities for scalability improvements 
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•  Users will riot 

…but what if they don’t? 
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•  What would be the forward / backward compatibility strategy? 
E.g., deprecate INIT, FINALIZE, INITIALIZED, FINALIZED…? 
 

•  What are the other arguments to MPI_SESSION_CREATE? 
•  Can you call both MPI_INIT and MPI_SESSION_CREATE in the same 

process? 
•  Can you do anything else with a session? 
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Come to the MPI Forum meeting 

Discuss this and other 
scintillating MPI topics 
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Cisco’s journey from Verbs 
to Libfabric 
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Application 

Kernel 

Cisco VIC ethX port 

TCP stack 

General Ethernet driver 

enic.ko 

Userspace 
sockets API userspace library 

Application 

Verbs IB core 

usnic.ko 

Send and 
receive 
fast path 

usNIC TCP/IP 
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Verbs is a fine API. 
 
 
 
…if you make InfiniBand 
hardware. 
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...but now there’s this 
libfabric thing 

 
(see libfabric.org 
community for details) 
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Keep in mind, Cisco already supports 
UD Verbs 
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•  Monotonic enum 
•  Could not add popular Ethernet values 

1500 

9000 

•  usNIC verbs provider had to lie (!) 
…just like iWARP providers 

•  MPI had to match verbs device with IP 
interface to find real MTU 

Verbs 
IBV_MTU_256 
IBV_MTU_512 
IBV_MTU_1024 
IBV_MTU_2048 
IBV_MTU_4096 
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•  Integer (not enum) endpoint attribute 

Libfabric 
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•  Integer (not enum) endpoint attribute 

Libfabric 
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•  Mandatory GRH structure 
InfiniBand-specific header 

•  40 bytes 
UDP header is 42 bytes 

…and a different format 

•  Breaks ib_ud_pingpong 
•  usnic verbs provider used “magic” 

ibv_port_query() to return extensions 
pointers 

E.g., enable 42-byte UDP mode 

Verbs 

e
t len chk smac dmac … 

ver len 
n
e
xt 

h
o
p 

sgid dgid 

UDP header: 42 bytes 

GRH: 40 bytes 
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•  FI_MSG_PREFIX and 
ep_attr.msg_prefix_size 

Libfabric 

e
t len chk smac dmac … 

payload 



© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 43 

•  FI_MSG_PREFIX and 
ep_attr.msg_prefix_size 

Libfabric 

e
t len chk smac dmac … 

payload 
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•  Tuple: (device, port) 
Usually a physical device and port 

Does not match virtualized VIC hardware 

•  Queue pair 
•  Completion queue 

Verbs 
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•  Maps nicely to SR-IOV 
•  Fabric à PCI physical function (PF) 
•  Domain à PCI virtual function (VF) 
•  Endpoint à Resources in VF 
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•  GID and GUID 
No easy mapping back to IP interface 

•  usnic verbs provider encoded MAC in 
GID 

Still cumbersome to map back to IP interface 

•  Could use RDMA CM 
…but that would be a ton more code 

Verbs 
mac[0] = gid->raw[8] ^ 2; 
mac[1] = gid->raw[9]; 
mac[2] = gid->raw[10]; 
mac[3] = gid->raw[13]; 
mac[4] = gid->raw[14]; 
mac[5] = gid->raw[15]; 
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•  Can use IP addressing directly 

Libfabric 

Everything is awesome 
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•  Can use IP addressing directly 

Libfabric 

Everything is awesome 
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•  Generic send call 
ibv_post_send(…SG list…) 

Lots of branches 

•  Wasteful allocations 
•  No prefixed receive 
•  Branching in completions 

Verbs 
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•  Multiple types of send calls 
fi_send(buffer, …) 

•  Variable-length prefix receive 
Provider-specific 

•  Fewer branches in completions 

Libfabric 
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•  Performance issues 
•  Memory registration still a problem 
•  No MPI-style tag matching 
•  One-sided capabilities do not match MPI 
•  Network topology is a separate API 

Verbs 
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•  Performance happiness 
•  Many MPI-helpful features: 

Tag matching 

One-sided operations 

Triggered operations 

•  Inherently designed to be more than just point-
to-point 

•  More work to be done… but promising 
MMU notify 

Network topology 

Libfabric 
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•  Long design discussions about how to 
expose Ethernet / VIC concepts in the 
verbs API 
…usually with few good answers 

Especially problematic with new VIC features 
over time 

•  Conclusion: possible (obviously), but not 
preferable 

•  Whole API designed with multiple vendor 
hardware models in mind 

•  Much easier to match our hardware to 
core Libfabric concepts 

•  Conclusion: much more preferable than 
verbs 

Libfabric Verbs 
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Ok, so let’s do libfabric! 
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Does it play well with 
MPI? 



© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 58 

Byte Transport Layer 
(BTL) plugins 

Matching Transport 
Layer (MTL) plugins 

MPI_Send(…) 
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•  Inherently multi-device 
•  Round-robin for 

 small messages 
•  Striping for large messages 

•  Major protocol decisions and MPI message matching driven by an Open MPI 
engine 

Byte Transport Layer 
(BTL) plugins 
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Matching Transport 
Layer (MTL) plugins 

•  Most details hidden by network API 
•  MXM 
•  Portals 
•  PSM 

•  As a side effect, must handle: 
•  Process loopback 
•  Server loopback (usually via shared memory) 
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Byte Transport Layer 
(BTL) plugins 

Matching Transport 
Layer (MTL) plugins 

•  IB / iWarp (verbs) 
•  Portals 
•  SCIF 
•  Shared memory 
•  TCP 
•  uGNI 
•  usNIC (verbs) 

•  MXM 
•  Portals 
•  PSM 
•  PSM2 
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•  IB / iWarp (verbs) 
•  Portals 
•  SCIF 
•  Shared memory 
•  TCP 
•  uGNI 
•  usNIC 

Byte Transport Layer 
(BTL) plugins 

Matching Transport 
Layer (MTL) plugins 

•  MXM 
•  Portals 
•  PSM 
•  PSM2 
•  ofi 

libfabric 
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libfabric 

usnic BTL ofi MTL 

•  Cisco developed 
•  usNIC-specific 
•  OFI point-to-point / UD 
•  Tested with usNIC 

•  Intel developed 
•  Provider neutral 
•  OFI tag matching 
•  Tested with PSM / PSM2 
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verbs 
bootstrapping 

verbs 
message passing 

sideband 
bootstrapping 

1.  Find the corresponding ethX device 
2.  Obtain MTU 
3.  Open usNIC-specific configuration 

options 
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verbs 
bootstrapping 

verbs 
message passing 

sideband 
bootstrapping 

libfabric 
bootstrapping 

à 

libfabric 
message passing à ~1:1 swap of verbs à libfabric calls 

Bootstrapping sequence totally different 

No sideband bootstrapping 
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•  For a specific provider 
Ask fi_getinfo() for 
prov_name=“usnic” 

•  Use usNIC extensions 
Netmask, link speed, IP device 
name, etc. 

•  usNIC-specific error 
messages 

•  For any tag-matching 
provider 

•  No extension use 
100% portable 

•  Generic error messages 

usnic BTL ofi MTL 



© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 67 

•  For a specific provider 
Ask fi_getinfo() for 
prov_name=“usnic” 

•  Use usNIC extensions 
Netmask, link speed, IP device 
name, etc. 

•  usNIC-specific error 
messages 

•  For any tag-matching 
provider 

•  No extension use 
100% portable 

•  Generic error messages 

usnic BTL ofi MTL 
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•  Libfabric is the Way 
Forward for Cisco 

Open community 
Matches our hardware 
Performance benefits 
Features benefits 

•  Libfabric matches MPI 
Has features MPI has been 
asking for… for years 
Optimistic about its future 
(come join us!) 
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Thank you. 


