Not Another
Boring Vendor Talk

This is what they get
for sending an engineer,
not a marketing guy

B
| —
_

Jeffrey M. Squyres)
Cisco Systems 3 |

f 23 September 2015 }
b $
‘ 4 ‘

-
CISCO = = AT\
,. : : =5 5\

NI
CISCO.

Cisco Unified
Computing
System

With Intelligent Intel*Xeon®
Processors .

Manage Cisco UCS Integrated
Infrastructure Solutions

Cisco UCS Director Software

Automate integrated infrastructure
orchestration and management

0

[(e (e
[BEER IRERL [KUEY (AR
(L3RR (AR tuum
BULCULUUOLLL L

oA
T O

XML API

Manage a Single Domain 6

——

{
|

i

Cisco UCS® Manager
Scale up to 160 blade or
rack servers in a single
management domain

e
MACEEEE

E_— 0 R R R R R IR .0
- Cisco
° e —— e Cisco SingleConnect
R Cisco UCS 6200 5 TEEE g clies Technology
Cisco UCS 2200 series Fabric Interconnects Optional Cisco i Racks R o
. Series Fabric Single point of conmectivity Nexus' 22§2PP 5 B ot notworks and
EXtenderS and management . 1OGE Fabrlc Extenders physica] and virtual servers
Scale without complexity 5] with one physical connection

Cisco Solutions
for EMC VSPEX

=

s VCE Vblock™
! System
: —
d (e

Cisco UCS Integrated
Infrastructure Solutions

Accelerate and
simplify application
deployment

|

i=

Nimble Storage
SmartStack

Cisco UCS
B-Series
Blade
SEWEES
Ciscc; UE:S -BZO nd M4
i e
&_“ . - =
Cisco UCS B420 M3 and M4

Enterprise Class

. Servers

e

Cisco UCS C220 M3 and M4

=

Cisco UCS C3160

320 servers in

Enterprise Class a single rack

Cisco UCS M142 Compute Cartridge

Cisco UCS Invicta
C3124SN Nodes

Solid-State Application Acceleration

S A
; Cisco UCS Virtual ... EIECENEE. ., . - ot | C1SCOUCS
nterface Card (VIC) 1225 2 M-Series . = G7105R Routers Invicta™
“-. Modular . 4 Series

EERETERELY

Cisco UCS Invicta
Scaling System

Cisco UCS Invicta C3124SA
Appliance

l'l'l'lll
CISCO.

WI

inside”
XEON®

1 !B o:,_‘ =5
Cisco UC
Fabric Inte
Creates an ai
Cisco UCS Mi.
for remote offic
branch offices

Cisco Unified
Computing

System

With Intelligent Intel*Xeon™ .-
Processors 5

Manage Cisco UCS Integrated
Infrastructure Solutions

Cisco UCS Director Software ™

Automate integrated infrastructure
orchestration and management

Networking

Manage Multiple Domains ‘*”

Cisco UCS Central S~
Manage multiple ~-
campus or*

Cisco UCS
B-Series
Blade
SEWEIES

Cisco UCS B200 M3 and M.

e
—om W
i e .

Cisco UCS B420 M3 and M4

2

Enterprise Class

s i
) |)

Cisco UCS B260 M4

B
Cisco UCS C460 M4

Mission Critical

5 llﬂl_i""i-‘.‘ |
B E_Li‘ }__x
L L S

=

h E: i

Cor-

ot

Cisco UCS Integrated
Infrastructure Solutions

. . Accelerate and

H | o= simplify application
N i deployment
. % b
FlexPod W
~
o)
(@)
A
VCE Vblock™
System
Solutions
'C VSPEX

Nimble Storage
, SmartStack
! v

Cisco Solutions

_.nect o | g’erlg'('fta"h' LCE
_.nnology _
Connect LAN, SAN, and : S |
management networks and 3 :
physical and virtual servers o
l with one physical connection 5 © VersaStack Solution
i = .- by Cisco and IBM
Cisco UCS Virtual L L - . . Cisco UCS - =048 Cisco UCS
3 © 5 R . i nvicta .
Interface Card (VIC) 1225 = ﬂﬂ - . M-Series . o T Invicta™
! Modular Series

n-.mma
T TTCCCC T

Cisco UCS C240 M3 and M4

=) W m— -
|-7‘..- t,- E: I

Cisco UCS €220 M3 and M4

Cisco UCS C3160

320 servers in

Enterprise Class a single rack

. Servers

T)
T A i

Cisco UCS M430§ Modular Chassis

=

Cisco UCS M142 Compute Cartridge

Cisco UCS Invicta | a -

C3124SN Nodes Cisco UCS Invicta C3124SA

Appliance
Cisco UCS Invicta

Scaling System

Solid-State Application Acceleration

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 4

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 5

S0 you get two talks —
for the price of one!

Talk 1

Thoughts on fixing

oroblems with MPI INIT
and MPI FINALIZE

A glimpse into the MPI
Forum

Cisco Public

Talk 2

Cisco’s journey from the
legacy Verbs API to

Libfabric
Libfabric

Cisco Public

MPI INIT and
MPI FINALIZE

Tales of Woe

Before MPI1-3.1, this could be erroneous

int main(int argc, char **argv) {
MPI Init thread(.., MPI THREAD FUNNELED, ..);
pthread create(.., my threadl main, NULL);

pthread create(.., my thread2 main, NULL);
// ..

}

int my threadl main(void *context) ({
MPI Initialized(&flag);
// ..

int my thread2 main(void *context) {
MPI Initialized(&flag);
/7] ..

}

Before MPI1-3.1, this could be erroneous

int main(int argc, char **argv) {
MPI Init thread(.., MPI THREAD FUNNELED, ..);
pthread create(.., my threadl main, NULL);

pthread create(.., my thread2 main, NULL);
// ..

int my threadl main(void *context) { These migh_t run
MPI Initialized(&flag); at the same time (!)

7 -

int my thread2 main(void *context) {
MPI Initialized(&flag);

// ..

The MPI-3.1 solution

- MPI_INITIALIZED (and friends) are allowed to be called at any time

...even by multiple threads
...regardless of MP|_THREAD_* level

- This is a simple, easy-to-explain solution
And probably what most applications do, anyway ©

- But many other paths were investigated

MPI1_INIT / FINALIZE limitations

- Cannot call MPI_INIT more than once
- Cannot set error behavior of MPI_INIT
- Cannot re-initialize MPI after it has been finalized

- Cannot init MPI from different entities within a process without a priori
knowledge / coordination

MPI| Process

// Library 1 // Library 2

MPI_Initialized(&flag); MPI Initialized(&flag);
if (!flag) MPI Init(..); if (!flag) MPI_Init(..);

MPI1_INIT / FINALIZE limitations

- Cannot call MPI_INIT more than once
- Cannot set error behavior of MPI_INIT
- Cannot re-initialize MPI after it has been finalized

- Cannot init MPI from different entities within a process without a priori
knowledge / coordination

MPI| Procece

J) ;.-J..I:’J._Init(...) 7

1994 called.

They want
their AP|
design back.

\What we should have

- Call MPL_INIT as many times as you like
- By whomever wants to call it

MPI| Process

// Library 1 // Library 2
MPI Init(..); MPI Init(..);

VWhat we should have

- Call MPL_INIT as many times as you like
- By whomever wants to call it

MPI| Process

: // Library 12
: : | MPI Init(..);
// Library 9 MY // Library 10 BB _ ()

MPI Init(..);

MPI Init(..);
// Library 3

. . AT T -r.._'_l_(.“);
L // Library 8 // Library 11

MPI_Init(..); 4., MPI_Init(..); | Library 6
-~ - I Init(..);
MPI Init(..); MPI_Init(..);

Library 4

// Library 7
MPI Init(..);

...but that has its own complications

 d
— Wl ke
= . - =
v 1 . .

Do you have to call MPI_FINALIZE
exactly that many times?

Do you allow MPI_INIT after
MPI|_FINALIZE?

Or perhaps you only allow
MPI_INIT before MPI has been
finalized?

How can you tell if it's safe to call
MPI _INIT? Atomic “test-and-init™?

We need something new

WARNING!

The following are just (incomplete)
crazy ideas

Cisco Public 20

New MPI concept: a session

int main(int argc, char **argv) {
pthread create(.., my threadl main, NULL);
pthread create(.., my thread2 main, NULL);

MPI Session session;
MPI Session create(.., &Se

int my thread2 main(void *context) {
MPI Session session;
MPI Session create(.., &session);

. _ // Do MPI things
MPI Session free(&session

MPI Session free(&session);

New MPI concept: a session

int main(int argc, char **-
pthread createf

’ S

MPI Session_ free(&session);

Create communicators from sessions

MPI Session sessilon;
MPI Session create(&session);
MPI Comm create from session(session, &comm)

int my threadl main(void *context) ({
MPI Session session;
MPI Session create(&session);

MPI_Comm_free(MPI Comm create from session(session, &comm)

MPI Session fr

// Do MPI things with comm

MPI Comm free(&comm) ;
MPI Session free(&session);

Problems that sessions solve

Each entity (library?) in an OS
process can have its own session

Any session-local state can be
encapsulated in the handle

Entities can create / destroy
sessions at any time
...In any thread

...but what about
MPlI COMM WORLD?

MPI_ COMM_WORLD. Sigh.

- When is MPI_COMM_WORLD created (and/or initialized)?
- When is MPI_ COMM_WORLD destroyed?
- Can you use MPI_ COMM_WORLD with any session?

- There doesn’t seem to be an obvious relation between MCW and individual sessions
(ditto for MPI_ COMM_SELF)

What if we get rid of
MPI COMM WORLD?

Problems that solves

- Addresses logical inconsistency with session concept

- Clean separation of communicators between sub-entities
...maybe slightly better than we have it today (sub-entities dup’ing COMM_WORLD)

- Side effects:
Fault tolerance issues become easier
Opens some possibilities for scalability improvements

Problems that creates

« Users will riot

...but what if they don’t?

Open questions

- What would be the forward / backward compatibility strategy?
E.qg., deprecate INIT, FINALIZE, INITIALIZED, FINALIZED...?

- What are the other arguments to MPl SESSION CREATE?

- Can you call both MPI_INIT and MPI_SESSION CREATE in the same
process?

- Can you do anything else with a session?

S000... what happens next?

Come to the MPI Forum meeting

Discuss this and other
scintillating MPI topics

Cisco’s journey from Verbs
to Libfabric

Cisco usNIC: OS bypass to the same ethX interface

TCP/IP usNIC
Application Application

sockets API userspace library

Userspace

Kernel
TCP stack

General Ethernet driver Verbs IB core Send and

receive

——————————————— - usnic_ko faSt path

\ 4
Cisco VIC ethX port

Verbs Is a fine API.

...If you make InfiniBand
hardware.

libfabric thing

(see libfabric.org
community for details)

Which API
S h O u Id be O u r Keep in mind, Cisco already supports
UD Verbs

way forward for
kernel bypass?

Comparison: MTU

- Monotonic enum |BV_|\/|TU_256

- Could not add popular Ethernet values IBVY MTU 512 00
1500 — —
e IBV_MTU_1024 _-A°

- UsNIC verbs provider had to lie (!) |BV_MTU_2048 Q
...just like iIWARP providers |BV_|\/|TU_4()96 Y 900

- MPI had to match verbs device with IP
interface to find real MTU

Comparison: MTU

Libfabric

- Integer (not enum) endpoint attribute

Comparison: MTU

Libfabric

- Integer (not enum) endpoin Oute

Comparison: Unreliable datagram

Verbs UDP header 42 bytes

- Mandatory GRH structure

InfiniBand-specific header

« 40 bytes
UDP header is 42 bytes
...and a different format

- Breaks ib_ud_ pingpong

dmac smac

» usnic verbs provider used “magic” sgid dgid
ibv_port_query() to return extensions
pointers

E.g., enable 42-byte UDP mode GRH- 40 bytes

Comparison: Unreliable datagram

Libfabric

- FI_MSG_PREFIX and
ep_attrmsg_prefix_size

Comparison: Unreliable datagran;

Libfabric

\ \ “.
- FI_MSG_PREFIX and '
ep_attr.msg_prefix_sise ’ Ima l ‘ ‘

d

J

Comparison: Hardware model

Verbs (o] (e

- Tuple: (device, port) eth4

Usually a physical device and port

usnic_0O

Does not match virtualized VIC hardware
- Queue pair .
. QP | QP e«
- Completion queue by d , k
ibv device < 3
- 137:00cf

ibv_port
PCIl 1137:00cf

PCIl 1137:00cf

Comparison: Hardware model

PCIl 1137:0043

Libfabric

- Maps nicely to SR-IOV fi fabric eth4

- Fabric = PCI physical function (PF)
- Domain - PCI virtual function (VF)

- Endpoint - Resources in VF fi_domain { m
fi_endpoint ﬂ1 37:00cf

(resources in domain) PCI 1137:00cf

usnic_0O

PCIl 1137:00cf

Comparison: Addressing

- GID and GUID

No easy mapping back to IP interface

ac[0] = gid->raw[8] " 2;
ac[1] = gid->raw[9];
acl[2] = gid->raw[10];
ac[3] = gid->raw][13];
acl4] = gid->raw][14];
ac[o] = gid->raw][15];

- usnic verbs provider encoded MAC in
GID

Still cumbersome to map back to IP interface

- Could use RDMA CM

...but that would be a ton more code

3 33 3 3 3

Comparison: Addressing

Libfabric

- Can use |IP addressing directly

Everything is awesome

Comparison: Addressing

Libfabric

- Can use IP addressing dire

Everything is awesome

Comparison: Performance

- Generic send call
ibv_post _send(...SG list...)

Lots of branches

- Wasteful allocations
- No prefixed receive
- Branching in completions

Comparison: Performance

Libfabric

- Multiple types of send calls
fi_send(buffer, ...)

- Variable-length prefix receive

LIBEABRIGIAND OPEN MPI

Provider-specific

B ¥’
- Fewer branches in completions . :
P Y

FASTER SHORT MESSAGES
FASTER LARGE MESSAGES

libfabric performance vs. Linux verbs

Open MPI with usNIC: IMB PingPong Latency
2.4

Iirlntl>—lplilngpon§—orﬁpi—]|_.EIB—IVIellLbs.oult | II
2.35 - imb-pingpong-ompi-1.8-libfabric.out
2.3
2.25
2.2 —
2.15
2.1

2.05

Time (microseconds)

1.95
1.9

|
[
1 1 1 1 Lo 1 1 1 [B | 1 1 1 [
0.1 1 10 100

libfabric performance vs. Linux verbs

Open MPI with usNIC: IMB SendRecv Bandwidth

69000 . . | .
imb-sendrecv-ompi-1.8-verbs.out |
= 68000 imb-sendrecv-ompi-1.8-libfabric.out
(e
S 67000 [
L
£ 66000 -
O
O
o 65000
£
< 64000
=
= 63000 -
(e
O
o 62000
61000 C |

le+06

Comparison: Application centricity

- Performance issues

- Memory registration still a problem

- No MPI-style tag matching

- One-sided capabilities do not match MPI
- Network topology is a separate API

Comparison: Application centricity

Libfabric
- Performance happiness SN,
- Many MPI-helpful features: w
KEEP
One-sided operations CALM

Tag matching

Triggered operations

AND
- Inherently designed to be more than just point-
to-point STAY
« More work to be done... but promising

MMU notify
Network topology

Conclusions

- Long design discussions about how to - Whole API designed with multiple vendor
expose Ethernet / VIC concepts in the hardware models in mind
verbs AP - Much easier to match our hardware to
...usually with few good answers core Libfabric concepts
Especially problematic with new VIC features
over time

« Conclusion: much more preferable than

- Conclusion: possible (obviously), but not verbs

preferable

Ok, so let's do libfabric!

Does it play well with
MP17?

Open MPI has two major types
of transports

Byte Transport Layer Matching Transport
(BTL) plugins Layer (MTL) plugins

BTL

- Inherently multi-device
Round-robin for Byte Transport Layer
small messages (BTL) plugins
Striping for large messages

- Major protocol decisions and MP| message matching driven by an Open MPI
engine

MTL

- Most details hidden by network API

» MXM Matching Transport
- Portals Layer (MTL) plugins
- PSM

- As a side effect, must handle:
* Process loopback
« Server loopback (usually via shared memory)

BTL and MTL plugins

Byte Transport Layer

(BTL) plugins

IB / iWarp (verbs)
Portals

SCIF

Shared memory
TCP

uGNl

usNIC (verbs)

Matching Transport
Layer (MTL) plugins

MXM
Portals
PSM
PSM?2

Now featuring 200% more libfabric

Byte Transport Layer Matching Transport
(BTL) plugins Layer (MTL) plugins
IB / iWarp (verbs) « MXM
Portals * Portals
SCIF - PSM
Shared memory « PSM2
TCP o Ofi

UGN

Libfabric-based plugins

libfabric

UShIC BTL ofi MTL

« Cisco developed * Intel developed

* usNIC-specific * Provider neutral

* OFI point-to-point / UD « OFIl tag matching

« Tested with usNIC e Tested with PSM / PSM2

First experiment
usnic BTL: verbs = libfabric

verbs
ADDING
bootstr . 1. Find the corresponding ethX device
Sldeband_ 2. Obtain MTU
bootstrapping 3. Open usNIC-specific configuration
options

verbs
message passing

First experiment
usnic BTL: verbs = libfabric

Bootstrapping sequence totally different

No sideband bootstrapping

~J

~1:1 swap of verbs —> libfabric calls

Second experiment
Two different libfabric usage models

usnic BTL ofi MTL
- For a specific provider - For any tag-matching
Ask fi_getinfo() for provider
prov_name="usnic" - No extension use
- Use usNIC extensions 100% portable
Netmask, link speed, IP device . '
hame. ete. Generic error messages

- UsNIC-specific error
messages

Second experiment
Two different libfabric usageg

usnic BTL

- For a spezg@orovider

dels

”’No extension use

prov_n
Use us 100% portable

Netmat - (Generic error messages

name, t

Summary

- Libfabric is the Way - Libfabric matches MPI
Forward for Cisco Has features MPI has been
Open community asking for... for years
Matches our hardware Optimistic about its future
Performance benefits (come join us!)

Features benefits

CISCO

